Small dummy deberta-v3-type Reward Model useable for Unit/Integration tests for RLHF. Suitable for CPU only machines, see [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio/blob/main/tests/integration/test_integration.py) for an example integration test. Model was created as follows: ```python from transformers import AutoConfig, AutoTokenizer, AutoModelForSequenceClassification repo_name = "MaxJeblick/reward-model-deberta-v3-unit-test" model_name = "OpenAssistant/reward-model-deberta-v3-large-v2" config = AutoConfig.from_pretrained(model_name) config.hidden_size = 12 config.intermediate_size = 24 config.num_attention_heads = 2 config.num_hidden_layers = 2 config.pooler_hidden_size = 12 tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_config(config) print(model.num_parameters()) # 1_546_129 model.push_to_hub(repo_name, private=False) tokenizer.push_to_hub(repo_name, private=False) config.push_to_hub(repo_name, private=False) ```