MambaFaceKISS-hf / imgen3.py
Maykeye
Initial commit
1a030c8
raw
history blame
2.93 kB
from mamba_ssm.modules.mamba_simple import Mamba
from mamba_ssm.modules.mamba2_simple import Mamba2Simple
from mamba_ssm.modules.mamba2 import Mamba2
import torch
from torch import Tensor
import random
import torch.nn as nn
import torch.nn.functional as F
from tqdm.auto import tqdm
from pathlib import Path
from einops import rearrange, repeat
from typing import Optional
from image_utils import ImageDB, ImageBatch, RGBToModel
from image_utils import ModelToRGB
from torch_utils import model_numel
epochs = 10_000
bs = 16
d_model = 768
weights_path = Path(f"data/weights-{d_model}.bin")
OPTS = {
'device': "cuda",
'dtype': torch.float32
}
class MambaWrap(nn.Module):
def __init__(self) -> None:
super().__init__()
self.mamba = Mamba2Simple(d_model, **OPTS, headdim=64)
self.norm = nn.LayerNorm(d_model, **OPTS)
def forward(self, x):
residual = x
x = self.norm(x)
x = self.mamba(x)
x = residual + x
return x
class Model(nn.Module):
def __init__(self) -> None:
super().__init__()
self.from_rgb = RGBToModel(d_model, **OPTS)
self.to_rgb = ModelToRGB(d_model, **OPTS)
self.s0 = nn.Parameter(torch.randn(1, 1, d_model, **OPTS))
self.suffix = nn.Parameter(torch.randn(64*64, d_model, **OPTS))
self.layers = nn.ModuleList([MambaWrap() for _ in range(4)])
self.norm0 = nn.LayerNorm(d_model, **OPTS)
def forward(self, batch: ImageBatch):
B = batch.n_batch
batch = batch.as_1d()
batch.im8 = self.from_rgb(batch.im8)
s0 = self.s0.repeat(B, 1, 1)
s1 = self.zoom(batch.im8)
x = torch.cat((s0, batch.im8, s1), 1)
x = self.norm0(x)
x = self.mamba(x)
x = x[:, -64*64:]
y_hat = self.to_rgb(x)
y_true = batch.im64
batch.loss = F.mse_loss(y_hat, y_true)
batch.im64 = y_hat
return batch.as_2d()
def zoom(self, im8):
im8 = im8.view(im8.shape[0], 8, 8, im8.shape[-1])
im8 = repeat(
im8, "B H W C -> B (H 8) (W 8) C").view(im8.shape[0], 64*64, im8.shape[-1])
im8 = im8 + self.suffix
return im8
def mamba(self, x):
for layer in self.layers:
x = layer(x)
return x
if __name__ == "__main_":
image_db = ImageDB(dtype=OPTS["dtype"])
model = Model()
if weights_path.exists():
print(f"*** Load {weights_path:s}")
model.load_state_dict(torch.load(weights_path))
opt = torch.optim.AdamW(model.parameters(), fused=True)
for e in (bar := tqdm(range(epochs))):
b = model(image_db.random_batch(bs))
b.loss.backward()
opt.step()
opt.zero_grad()
bar.set_description(f'L:{b.loss.item():.4f}')
if e and e % 100 == 0:
torch.save(model.state_dict(), weights_path)
torch.save(model.state_dict(), weights_path)