File size: 7,563 Bytes
a2afcde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
---
language:
- en
pipeline_tag: text-generation
tags:
- chat
- qwen
- qwen2
- finetune
- chatml
library_name: transformers
inference: false
model_creator: MaziyarPanahi
quantized_by: MaziyarPanahi
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
model_name: calme-2.1-legalkit-8b
datasets:
- MaziyarPanahi/legalkit_cot_reasoning_nous_hermes
---

<img src="./calme-2.webp" alt="Calme-2 Models" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>

# MaziyarPanahi/calme-2.1-legalkit-8b

This model is an advanced iteration of the powerful `meta-llama/Meta-Llama-3.1-8B-Instruct`, specifically fine-tuned to enhance its capabilities in the legal domain. The fine-tuning process utilized a synthetically generated dataset derived from the French [LegalKit](https://huggingface.co/datasets/louisbrulenaudet/legalkit), a comprehensive legal language resource.

To create this specialized dataset, I used the `NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO` model in conjunction with Hugging Face's Inference Endpoint. This approach allowed for the generation of high-quality, synthetic data that incorporates Chain of Thought (CoT) and advanced reasoning in its responses.

The resulting model combines the robust foundation of `Llama-3.1-8B` with tailored legal knowledge and enhanced reasoning capabilities. This makes it particularly well-suited for tasks requiring in-depth legal analysis, interpretation, and application of French legal concepts.


# ⚡ Quantized GGUF

All GGUF models are available here: [MaziyarPanahi/calme-2.1-legalkit-8b-GGUF](https://huggingface.co/MaziyarPanahi/calme-2.1-legalkit-8b-GGUF)


# 🏆 [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)

Leaderboard 2 coming soon!

## TruthfulQA:
```
|    Tasks     |Version|Filter|n-shot|Metric|Value |   |Stderr|
|--------------|------:|------|-----:|------|-----:|---|-----:|
|truthfulqa_mc2|      2|none  |     0|acc   |0.5481|±  |0.0152|
```

## WinoGrande:
```
|  Tasks   |Version|Filter|n-shot|Metric|Value |   |Stderr|
|----------|------:|------|-----:|------|-----:|---|-----:|
|winogrande|      1|none  |     5|acc   |0.7758|±  |0.0117|
```

## ARC (Challenge) :
```
|    Tasks    |Version|Filter|n-shot| Metric |Value |   |Stderr|
|-------------|------:|------|-----:|--------|-----:|---|-----:|
|arc_challenge|      1|none  |    25|acc     |0.5666|±  |0.0145|
|             |       |none  |    25|acc_norm|0.6101|±  |0.0143|
```

## GSM8K:
```
|Tasks|Version|     Filter     |n-shot|  Metric   |Value|   |Stderr|
|-----|------:|----------------|-----:|-----------|----:|---|-----:|
|gsm8k|      3|strict-match    |     5|exact_match|0.771|±  |0.0116|
|     |       |flexible-extract|     5|exact_match|0.771|±  |0.0116|
```

# Prompt Template

This model uses `ChatML` prompt template:

```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>

{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>

{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

````

# Example

```
<|begin_of_text|><|start_header_id|>user<|end_header_id|>

Quelles sont les modalités d'utilisation d'un contingent annuel d'heures supplémentaires et de son éventuel dépassement qui sont soumises à consultation du comité social et économique au moins une fois par an en l'absence d'accord ?<|eot_id|><|start_header_id|>assistant<|end_header_id|>


<|begin_of_text|><|begin_of_text|><|start_header_id|>user<|end_header_id|>

Quelles sont les modalités d'utilisation d'un contingent annuel d'heures supplémentaires et de son éventuel dépassement qui sont soumises à consultation du comité social et économique au moins une fois par an en l'absence d'accord?<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Pour répondre à la question posée, nous allons examiner le texte du Code du travail, article L3121-44, et analyser les informations données étape par étape. Nous chercherons à comprendre les modalités d'utilisation d'un contingent annuel d'heures supplémentaires et de son éventuel dépassement qui sont soumises à consultation du comité social et économique au moins une fois par an en l'absence d'accord.

### Analyse de l'Article L3121-44 du Code du Travail

1. **Texte de l'Article L3121-44** :
   "A défaut d'accord prévu à l'article L. 3121-42, les modalités d'utilisation du contingent annuel d'heures supplémentaires ainsi que celles relatives à son dépassement mentionnées aux articles L. 3121-37 à L. 3121-40 font l'objet d'une consultation du comité social et économique au moins une fois par an."

2. **Explication par Éléments** :

   - **Absence d'Accord** :
     L'article indique qu'en l'absence d'un accord entre l'employeur et les représentants des salariés (comme prévu à l'article L. 3121-42), certaines règles s'appliquent.

   - **Contingent Annuel d'Heures Supplémentaires** :
     Le contingent annuel d'heures supplémentaires est un nombre d'heures supplémentaires que les employeurs peuvent demander à leurs salariés de travailler au-delà de leur temps de travail réglementaire, sans que cela soit considéré comme du travail excessif.

   - **Modalités d'Utilisation et Dépassement** :
     Les modalités d'utilisation du contingent annuel d'heures supplémentaires et celles relatives à son dépassement sont définies dans les articles L. 3121-37 à L. 3121-40 du Code du travail.

   - **Consultation du Comité Social et Économique** :
     En l'absence d'accord, ces modalités doivent être soumises à la consultation du comité social et économique (CSE) au moins une fois par an. Le CSE est une instance représentative du personnel qui a pour mission de participer à la gestion des affaires sociales et économiques de l'entreprise.

### Réponse Basée sur l'Analyse

En l'absence d'accord entre l'employeur et les représentants des salariés concernant les modalités d'utilisation d'un contingent annuel d'heures supplémentaires et de son éventuel dépassement, ces modalités doivent être soumises à la consultation du comité social et économique (CSE) au moins une fois par an. Ces modalités sont définies dans les articles L. 3121-37 à L. 3121-40 du Code du travail.

### Justification et Conclusion

Cette réponse est cohérente avec l'entrée fournie. Elle explique clairement les conséquences d'un manque d'accord entre les parties concernées et souligne l'importance de la consultation du comité social et économique dans ce contexte. En utilisant l'article L3121-44 comme base, nous avons développé une compréhension claire et complète des obligations légales en matière de consultation du CSE en l'absence d'accord sur les heures supplémentaires et leur dépassement.<|eot_id|>
```

# How to use


```python

# Use a pipeline as a high-level helper

from transformers import pipeline

messages = [
    {"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="MaziyarPanahi/calme-2.1-legalkit-8b")
pipe(messages)


# Load model directly

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("MaziyarPanahi/calme-2.1-legalkit-8b")
model = AutoModelForCausalLM.from_pretrained("MaziyarPanahi/calme-2.1-legalkit-8b")
```



# Ethical Considerations

As with any large language model, users should be aware of potential biases and limitations. We recommend implementing appropriate safeguards and human oversight when deploying this model in production environments.