File size: 3,286 Bytes
bf4f5ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
language:
- en
license: other
library_name: transformers
tags:
- chat
- qwen
- qwen2
- calme
- calme2
- finetune
- chatml
base_model: Qwen/Qwen2-72B
license_name: tongyi-qianwen
license_link: https://huggingface.co/Qwen/Qwen2-72B/blob/main/LICENSE
pipeline_tag: text-generation
inference: false
model_creator: MaziyarPanahi
quantized_by: MaziyarPanahi
---

<img src="./calme-2.webp" alt="Qwen2 fine-tune" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>

# MaziyarPanahi/calme-2.3-qwen2-72b

This model is a fine-tuned version of the powerful `Qwen/Qwen2-72B-Instruct`, pushing the boundaries of natural language understanding and generation even further. My goal was to create a versatile and robust model that excels across a wide range of benchmarks and real-world applications.

## Use Cases

This model is suitable for a wide range of applications, including but not limited to:

- Advanced question-answering systems
- Intelligent chatbots and virtual assistants
- Content generation and summarization
- Code generation and analysis
- Complex problem-solving and decision support

# ⚡ Quantized GGUF

All GGUF models are available here: [MaziyarPanahi/calme-2.3-qwen2-72b-GGUF](https://huggingface.co/MaziyarPanahi/calme-2.3-qwen2-72b-GGUF)

# 🏆 [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)


Leaderboard 2: coming soon!


|    Tasks     |Version|Filter|n-shot|Metric|Value |   |Stderr|
|--------------|------:|------|-----:|------|-----:|---|-----:|
|truthfulqa_mc2|      2|none  |     0|acc   |0.6761|±  |0.0148|

|  Tasks   |Version|Filter|n-shot|Metric|Value |   |Stderr|
|----------|------:|------|-----:|------|-----:|---|-----:|
|winogrande|      1|none  |     5|acc   |0.8248|±  |0.0107|

|    Tasks    |Version|Filter|n-shot| Metric |Value |   |Stderr|
|-------------|------:|------|-----:|--------|-----:|---|-----:|
|arc_challenge|      1|none  |    25|acc     |0.6852|±  |0.0136|
|             |       |none  |    25|acc_norm|0.7184|±  |0.0131|

|Tasks|Version|     Filter     |n-shot|  Metric   |Value |   |Stderr|
|-----|------:|----------------|-----:|-----------|-----:|---|-----:|
|gsm8k|      3|strict-match    |     5|exact_match|0.8582|±  |0.0096|
|     |       |flexible-extract|     5|exact_match|0.8893|±  |0.0086|

# Prompt Template

This model uses `ChatML` prompt template:

```
<|im_start|>system
{System}
<|im_end|>
<|im_start|>user
{User}
<|im_end|>
<|im_start|>assistant
{Assistant}
````

# How to use


```python

# Use a pipeline as a high-level helper

from transformers import pipeline

messages = [
    {"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="MaziyarPanahi/calme-2.3-qwen2-72b")
pipe(messages)


# Load model directly

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("MaziyarPanahi/calme-2.3-qwen2-72b")
model = AutoModelForCausalLM.from_pretrained("MaziyarPanahi/calme-2.3-qwen2-72b")
```

# Ethical Considerations

As with any large language model, users should be aware of potential biases and limitations. We recommend implementing appropriate safeguards and human oversight when deploying this model in production environments.