MaziyarPanahi commited on
Commit
a85d237
1 Parent(s): d67814e

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: qwen
4
+ license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
5
+ language:
6
+ - en
7
+ pipeline_tag: text-generation
8
+ tags:
9
+ - chat
10
+ - qwen
11
+ - qwen2.5
12
+ - finetune
13
+ - english
14
+ library_name: transformers
15
+ inference: false
16
+ model_creator: MaziyarPanahi
17
+ quantized_by: MaziyarPanahi
18
+ base_model: MaziyarPanahi/calme-3-selfmerge-qwen2-78b
19
+ model_name: calme-3.1-instruct-78b
20
+ ---
21
+
22
+ <img src="./calme_3.png" alt="Calme-3 Models" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
23
+
24
+ > [!TIP]
25
+ > This is avery small model, so it might not perform well for some prompts and may be sensitive to hyper parameters. I would appreciate any feedback to see if I can fix any issues in the next iteration. ❤️
26
+
27
+ # MaziyarPanahi/calme-3.1-instruct-78b
28
+
29
+ This model is an advanced iteration of the powerful `Qwen/Qwen2.5-72B`, specifically fine-tuned to enhance its capabilities in generic domains. The `Qwen2.5-72B` base model was merged with itself to create a larger model. After that, the model was fine-tuned on a custom datasets.
30
+
31
+ # ⚡ Quantized GGUF
32
+
33
+ Coming soon!
34
+
35
+ # 🏆 [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
36
+
37
+ Leaderboard 2 coming soon!
38
+
39
+ # Prompt Template
40
+
41
+ This model uses `ChatML` prompt template:
42
+
43
+ ```sh
44
+ <|im_start|>system
45
+ {System}
46
+ <|im_end|>
47
+ <|im_start|>user
48
+ {User}
49
+ <|im_end|>
50
+ <|im_start|>assistant
51
+ {Assistant}
52
+ ````
53
+
54
+ # How to use
55
+
56
+ ```python
57
+
58
+ # Use a pipeline as a high-level helper
59
+
60
+ from transformers import pipeline
61
+
62
+ messages = [
63
+ {"role": "user", "content": "Who are you?"},
64
+ ]
65
+ pipe = pipeline("text-generation", model="MaziyarPanahi/calme-3.1-instruct-78b")
66
+ pipe(messages)
67
+
68
+
69
+ # Load model directly
70
+
71
+ from transformers import AutoTokenizer, AutoModelForCausalLM
72
+
73
+ tokenizer = AutoTokenizer.from_pretrained("MaziyarPanahi/calme-3.1-instruct-78b")
74
+ model = AutoModelForCausalLM.from_pretrained("MaziyarPanahi/calme-3.1-instruct-78b")
75
+ ```
76
+
77
+ # Ethical Considerations
78
+
79
+ As with any large language model, users should be aware of potential biases and limitations. We recommend implementing appropriate safeguards and human oversight when deploying this model in production environments.