File size: 4,004 Bytes
e8f7504 3431cbb e8f7504 725b78a e8f7504 9759168 e8f7504 e101173 e8f7504 54df7dc e8f7504 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
---
license: apache-2.0
tags:
- transformers
- axolotl
- generated_from_trainer
- gemma
- 7b
- alpaca
- peft
- lora
- qlora
base_model: google/gemma-7b
model-index:
- name: gemma-7b-alpaca-52k-v0.1
results: []
datasets:
- tatsu-lab/alpaca
pipeline_tag: text-generation
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
# use google/gemma-7b if you have access
#base_model: mhenrichsen/gemma-7b
base_model: google/gemma-7b
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
hub_model_id: MaziyarPanahi/gemma-7b-alpaca-52k-v0.1
hf_use_auth_token: true
load_in_8bit: false
load_in_4bit: true
strict: false
# huggingface repo
datasets:
- path: tatsu-lab/alpaca
type: alpaca
val_set_size: 0.1
output_dir: ./qlora-gemma-7b-alpaca
adapter: qlora
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
sequence_len: 4096
sample_packing: false
pad_to_sequence_len: false
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 3
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```
</details><br>
# gemma-7b-alpaca-52k-v0.1
This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1468
## How to use
**PEFT**
```python
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM
model_id = "MaziyarPanahi/gemma-7b-alpaca-52k-v0.1"
config = PeftConfig.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained("google/gemma-7b")
model = PeftModel.from_pretrained(model, model_id)
```
**Transformers**
```python
# Use a pipeline as a high-level helper
from transformers import pipeline
model_id = "MaziyarPanahi/gemma-7b-alpaca-52k-v0.1"
pipe = pipeline("text-generation", model=model_id)
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
```
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 3
- total_train_batch_size: 24
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 48
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.5395 | 0.0 | 1 | 1.4186 |
| 1.099 | 0.25 | 488 | 1.1994 |
| 1.2188 | 0.5 | 976 | 1.1751 |
| 1.0511 | 0.75 | 1464 | 1.1468 |
### Framework versions
- PEFT 0.8.2
- Transformers 4.39.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.0 |