vaibhavad commited on
Commit
b496eed
·
verified ·
1 Parent(s): e6904a7

Create attn_mask_utils.py

Browse files
Files changed (1) hide show
  1. attn_mask_utils.py +202 -0
attn_mask_utils.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional, Tuple, Union
2
+ import torch
3
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
4
+
5
+ def _prepare_4d_attention_mask_for_sdpa(
6
+ attention_mask: Optional[torch.Tensor],
7
+ input_shape: Union[torch.Size, Tuple, List],
8
+ inputs_embeds: torch.Tensor,
9
+ past_key_values_length: int,
10
+ sliding_window: Optional[int] = None,
11
+ ):
12
+ attn_mask_converter = AttentionMaskConverter(is_causal=False, sliding_window=sliding_window)
13
+
14
+ key_value_length = input_shape[-1] + past_key_values_length
15
+ batch_size, query_length = input_shape
16
+
17
+ # torch.jit.trace and torchdynamo with fullgraph=True are unable to capture the controlflow `is_causal=attention_mask is None and q_len > 1`
18
+ # used as an SDPA argument. We keep compatibility with these tracing tools by always using SDPA's `attn_mask` argument in case we are tracing.
19
+ # TODO: Fix this as well when using torchdynamo with fullgraph=True.
20
+ is_tracing = torch.jit.is_tracing()
21
+
22
+ if attention_mask is not None:
23
+ if torch.all(attention_mask == 1):
24
+ if is_tracing:
25
+ pass
26
+ elif query_length == 1:
27
+ # For query_length == 1, causal attention and bi-directional attention are the same.
28
+ attention_mask = None
29
+ elif key_value_length == query_length:
30
+ attention_mask = None
31
+ else:
32
+ # Unfortunately, for query_length > 1 and key_value_length != query_length, we cannot generally ignore the attention mask, as SDPA causal mask generation
33
+ # may be wrong. We will set `is_causal=False` in SDPA and rely on Transformers attention_mask instead, hence not setting it to None here.
34
+ # Reference: https://github.com/pytorch/pytorch/issues/108108
35
+ pass
36
+ elif query_length > 1 and key_value_length != query_length:
37
+ # See the comment above (https://github.com/pytorch/pytorch/issues/108108).
38
+ # Ugly: we set it to True here to dispatch in the following controlflow to `to_causal_4d`.
39
+ attention_mask = True
40
+ elif is_tracing:
41
+ raise ValueError(
42
+ 'Attention using SDPA can not be traced with torch.jit.trace when no attention_mask is provided. To solve this issue, please either load your model with the argument `attn_implementation="eager"` or pass an attention_mask input when tracing the model.'
43
+ )
44
+
45
+ if attention_mask is None:
46
+ expanded_4d_mask = None
47
+ elif attention_mask is True:
48
+ expanded_4d_mask = attn_mask_converter.to_causal_4d(
49
+ input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device
50
+ )
51
+ else:
52
+ expanded_4d_mask = attn_mask_converter.to_4d(
53
+ attention_mask,
54
+ input_shape[-1],
55
+ dtype=inputs_embeds.dtype,
56
+ key_value_length=key_value_length,
57
+ )
58
+
59
+ # From PyTorch 2.1 onwards, F.scaled_dot_product_attention with the memory-efficient attention backend
60
+ # produces nans if sequences are completely unattended in the attention mask. Details: https://github.com/pytorch/pytorch/issues/110213
61
+ if query_length > 1:
62
+ expanded_4d_mask = AttentionMaskConverter._unmask_unattended(
63
+ expanded_4d_mask, attention_mask, unmasked_value=0.0
64
+ )
65
+
66
+ return expanded_4d_mask
67
+
68
+
69
+ def _prepare_4d_attention_mask(
70
+ attention_mask: Optional[torch.Tensor],
71
+ input_shape: Union[torch.Size, Tuple, List],
72
+ inputs_embeds: torch.Tensor,
73
+ past_key_values_length: int,
74
+ sliding_window: Optional[int] = None,
75
+ ):
76
+ attn_mask_converter = AttentionMaskConverter(is_causal=False, sliding_window=sliding_window)
77
+
78
+ key_value_length = input_shape[-1] + past_key_values_length
79
+
80
+ # 4d mask is passed through the layers
81
+ if attention_mask is not None:
82
+ attention_mask = attn_mask_converter.to_4d(
83
+ attention_mask, input_shape[-1], key_value_length=key_value_length, dtype=inputs_embeds.dtype
84
+ )
85
+ else:
86
+ attention_mask = attn_mask_converter.to_causal_4d(
87
+ input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device
88
+ )
89
+
90
+ return attention_mask
91
+
92
+
93
+ def _prepare_4d_causal_attention_mask(
94
+ attention_mask: Optional[torch.Tensor],
95
+ input_shape: Union[torch.Size, Tuple, List],
96
+ inputs_embeds: torch.Tensor,
97
+ past_key_values_length: int,
98
+ sliding_window: Optional[int] = None,
99
+ ):
100
+ attn_mask_converter = AttentionMaskConverter(is_causal=False, sliding_window=sliding_window)
101
+
102
+ key_value_length = input_shape[-1] + past_key_values_length
103
+
104
+ # 4d mask is passed through the layers
105
+ if attention_mask is not None:
106
+ attention_mask = attn_mask_converter.to_4d(
107
+ attention_mask, input_shape[-1], key_value_length=key_value_length, dtype=inputs_embeds.dtype
108
+ )
109
+ else:
110
+ attention_mask = attn_mask_converter.to_causal_4d(
111
+ input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device
112
+ )
113
+
114
+ return attention_mask
115
+
116
+
117
+ def _prepare_4d_causal_attention_mask_for_sdpa(
118
+ attention_mask: Optional[torch.Tensor],
119
+ input_shape: Union[torch.Size, Tuple, List],
120
+ inputs_embeds: torch.Tensor,
121
+ past_key_values_length: int,
122
+ sliding_window: Optional[int] = None,
123
+ ):
124
+ """
125
+ Prepares the correct `attn_mask` argument to be used by `torch.nn.functional.scaled_dot_product_attention`.
126
+
127
+ In case no token is masked in the `attention_mask` argument, we simply set it to `None` for the cases `query_length == 1` and
128
+ `key_value_length == query_length`, and rely instead on SDPA `is_causal` argument to use causal/non-causal masks,
129
+ allowing to dispatch to the flash attention kernel (that can otherwise not be used if a custom `attn_mask` is passed).
130
+ """
131
+ attn_mask_converter = AttentionMaskConverter(is_causal=False, sliding_window=sliding_window)
132
+
133
+ key_value_length = input_shape[-1] + past_key_values_length
134
+ batch_size, query_length = input_shape
135
+
136
+ # torch.jit.trace, symbolic_trace and torchdynamo with fullgraph=True are unable to capture the controlflow `is_causal=attention_mask is None and q_len > 1`
137
+ # used as an SDPA argument. We keep compatibility with these tracing tools by always using SDPA's `attn_mask` argument in case we are tracing.
138
+ # TODO: Fix this as well when using torchdynamo with fullgraph=True.
139
+ is_tracing = torch.jit.is_tracing() or isinstance(inputs_embeds, torch.fx.Proxy)
140
+
141
+ if attention_mask is not None:
142
+ # 4d mask is passed through
143
+ if len(attention_mask.shape) == 4:
144
+ expected_shape = (input_shape[0], 1, input_shape[1], key_value_length)
145
+ if tuple(attention_mask.shape) != expected_shape:
146
+ raise ValueError(
147
+ f"Incorrect 4D attention_mask shape: {tuple(attention_mask.shape)}; expected: {expected_shape}."
148
+ )
149
+ else:
150
+ # if the 4D mask has correct shape - invert it and fill with negative infinity
151
+ inverted_mask = 1.0 - attention_mask.to(inputs_embeds.dtype)
152
+ attention_mask = inverted_mask.masked_fill(
153
+ inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min
154
+ )
155
+ return attention_mask
156
+
157
+ elif not is_tracing and torch.all(attention_mask == 1):
158
+ if query_length == 1:
159
+ # For query_length == 1, causal attention and bi-directional attention are the same.
160
+ attention_mask = None
161
+ elif key_value_length == query_length:
162
+ attention_mask = None
163
+ else:
164
+ # Unfortunately, for query_length > 1 and key_value_length != query_length, we cannot generally ignore the attention mask, as SDPA causal mask generation
165
+ # may be wrong. We will set `is_causal=False` in SDPA and rely on Transformers attention_mask instead, hence not setting it to None here.
166
+ # Reference: https://github.com/pytorch/pytorch/issues/108108
167
+ pass
168
+ elif query_length > 1 and key_value_length != query_length:
169
+ # See the comment above (https://github.com/pytorch/pytorch/issues/108108).
170
+ # Ugly: we set it to True here to dispatch in the following controlflow to `to_causal_4d`.
171
+ attention_mask = True
172
+ elif is_tracing:
173
+ raise ValueError(
174
+ 'Attention using SDPA can not be traced with torch.jit.trace when no attention_mask is provided. To solve this issue, please either load your model with the argument `attn_implementation="eager"` or pass an attention_mask input when tracing the model.'
175
+ )
176
+
177
+ if attention_mask is None:
178
+ expanded_4d_mask = None
179
+ elif attention_mask is True:
180
+ expanded_4d_mask = attn_mask_converter.to_causal_4d(
181
+ input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device
182
+ )
183
+ else:
184
+ expanded_4d_mask = attn_mask_converter.to_4d(
185
+ attention_mask,
186
+ input_shape[-1],
187
+ dtype=inputs_embeds.dtype,
188
+ key_value_length=key_value_length,
189
+ )
190
+
191
+ # From PyTorch 2.1 onwards, F.scaled_dot_product_attention with the memory-efficient attention backend
192
+ # produces nans if sequences are completely unattended in the attention mask. Details: https://github.com/pytorch/pytorch/issues/110213
193
+ #
194
+ # This fix is not applied in case we are tracing with torch.jit.trace or symbolic_trace, as _unmask_unattended has a data-dependent
195
+ # controlflow that can not be captured properly.
196
+ # TODO: _unmask_unattended does not work either with torch.compile when using fullgraph=True. We should find a way to detect this case.
197
+ if query_length > 1 and not is_tracing:
198
+ expanded_4d_mask = AttentionMaskConverter._unmask_unattended(
199
+ expanded_4d_mask, attention_mask, unmasked_value=0.0
200
+ )
201
+
202
+ return expanded_4d_mask