Sentence Similarity
Transformers
Safetensors
English
mistral
feature-extraction
text-embedding
embeddings
information-retrieval
beir
text-classification
language-model
text-clustering
text-semantic-similarity
text-evaluation
text-reranking
Sentence Similarity
natural_questions
ms_marco
fever
hotpot_qa
mteb
custom_code
text-generation-inference
text-embeddings-inference
Inference Endpoints
Create attn_mask_utils.py
Browse files- attn_mask_utils.py +202 -0
attn_mask_utils.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Tuple, Union
|
2 |
+
import torch
|
3 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
4 |
+
|
5 |
+
def _prepare_4d_attention_mask_for_sdpa(
|
6 |
+
attention_mask: Optional[torch.Tensor],
|
7 |
+
input_shape: Union[torch.Size, Tuple, List],
|
8 |
+
inputs_embeds: torch.Tensor,
|
9 |
+
past_key_values_length: int,
|
10 |
+
sliding_window: Optional[int] = None,
|
11 |
+
):
|
12 |
+
attn_mask_converter = AttentionMaskConverter(is_causal=False, sliding_window=sliding_window)
|
13 |
+
|
14 |
+
key_value_length = input_shape[-1] + past_key_values_length
|
15 |
+
batch_size, query_length = input_shape
|
16 |
+
|
17 |
+
# torch.jit.trace and torchdynamo with fullgraph=True are unable to capture the controlflow `is_causal=attention_mask is None and q_len > 1`
|
18 |
+
# used as an SDPA argument. We keep compatibility with these tracing tools by always using SDPA's `attn_mask` argument in case we are tracing.
|
19 |
+
# TODO: Fix this as well when using torchdynamo with fullgraph=True.
|
20 |
+
is_tracing = torch.jit.is_tracing()
|
21 |
+
|
22 |
+
if attention_mask is not None:
|
23 |
+
if torch.all(attention_mask == 1):
|
24 |
+
if is_tracing:
|
25 |
+
pass
|
26 |
+
elif query_length == 1:
|
27 |
+
# For query_length == 1, causal attention and bi-directional attention are the same.
|
28 |
+
attention_mask = None
|
29 |
+
elif key_value_length == query_length:
|
30 |
+
attention_mask = None
|
31 |
+
else:
|
32 |
+
# Unfortunately, for query_length > 1 and key_value_length != query_length, we cannot generally ignore the attention mask, as SDPA causal mask generation
|
33 |
+
# may be wrong. We will set `is_causal=False` in SDPA and rely on Transformers attention_mask instead, hence not setting it to None here.
|
34 |
+
# Reference: https://github.com/pytorch/pytorch/issues/108108
|
35 |
+
pass
|
36 |
+
elif query_length > 1 and key_value_length != query_length:
|
37 |
+
# See the comment above (https://github.com/pytorch/pytorch/issues/108108).
|
38 |
+
# Ugly: we set it to True here to dispatch in the following controlflow to `to_causal_4d`.
|
39 |
+
attention_mask = True
|
40 |
+
elif is_tracing:
|
41 |
+
raise ValueError(
|
42 |
+
'Attention using SDPA can not be traced with torch.jit.trace when no attention_mask is provided. To solve this issue, please either load your model with the argument `attn_implementation="eager"` or pass an attention_mask input when tracing the model.'
|
43 |
+
)
|
44 |
+
|
45 |
+
if attention_mask is None:
|
46 |
+
expanded_4d_mask = None
|
47 |
+
elif attention_mask is True:
|
48 |
+
expanded_4d_mask = attn_mask_converter.to_causal_4d(
|
49 |
+
input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
50 |
+
)
|
51 |
+
else:
|
52 |
+
expanded_4d_mask = attn_mask_converter.to_4d(
|
53 |
+
attention_mask,
|
54 |
+
input_shape[-1],
|
55 |
+
dtype=inputs_embeds.dtype,
|
56 |
+
key_value_length=key_value_length,
|
57 |
+
)
|
58 |
+
|
59 |
+
# From PyTorch 2.1 onwards, F.scaled_dot_product_attention with the memory-efficient attention backend
|
60 |
+
# produces nans if sequences are completely unattended in the attention mask. Details: https://github.com/pytorch/pytorch/issues/110213
|
61 |
+
if query_length > 1:
|
62 |
+
expanded_4d_mask = AttentionMaskConverter._unmask_unattended(
|
63 |
+
expanded_4d_mask, attention_mask, unmasked_value=0.0
|
64 |
+
)
|
65 |
+
|
66 |
+
return expanded_4d_mask
|
67 |
+
|
68 |
+
|
69 |
+
def _prepare_4d_attention_mask(
|
70 |
+
attention_mask: Optional[torch.Tensor],
|
71 |
+
input_shape: Union[torch.Size, Tuple, List],
|
72 |
+
inputs_embeds: torch.Tensor,
|
73 |
+
past_key_values_length: int,
|
74 |
+
sliding_window: Optional[int] = None,
|
75 |
+
):
|
76 |
+
attn_mask_converter = AttentionMaskConverter(is_causal=False, sliding_window=sliding_window)
|
77 |
+
|
78 |
+
key_value_length = input_shape[-1] + past_key_values_length
|
79 |
+
|
80 |
+
# 4d mask is passed through the layers
|
81 |
+
if attention_mask is not None:
|
82 |
+
attention_mask = attn_mask_converter.to_4d(
|
83 |
+
attention_mask, input_shape[-1], key_value_length=key_value_length, dtype=inputs_embeds.dtype
|
84 |
+
)
|
85 |
+
else:
|
86 |
+
attention_mask = attn_mask_converter.to_causal_4d(
|
87 |
+
input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
88 |
+
)
|
89 |
+
|
90 |
+
return attention_mask
|
91 |
+
|
92 |
+
|
93 |
+
def _prepare_4d_causal_attention_mask(
|
94 |
+
attention_mask: Optional[torch.Tensor],
|
95 |
+
input_shape: Union[torch.Size, Tuple, List],
|
96 |
+
inputs_embeds: torch.Tensor,
|
97 |
+
past_key_values_length: int,
|
98 |
+
sliding_window: Optional[int] = None,
|
99 |
+
):
|
100 |
+
attn_mask_converter = AttentionMaskConverter(is_causal=False, sliding_window=sliding_window)
|
101 |
+
|
102 |
+
key_value_length = input_shape[-1] + past_key_values_length
|
103 |
+
|
104 |
+
# 4d mask is passed through the layers
|
105 |
+
if attention_mask is not None:
|
106 |
+
attention_mask = attn_mask_converter.to_4d(
|
107 |
+
attention_mask, input_shape[-1], key_value_length=key_value_length, dtype=inputs_embeds.dtype
|
108 |
+
)
|
109 |
+
else:
|
110 |
+
attention_mask = attn_mask_converter.to_causal_4d(
|
111 |
+
input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
112 |
+
)
|
113 |
+
|
114 |
+
return attention_mask
|
115 |
+
|
116 |
+
|
117 |
+
def _prepare_4d_causal_attention_mask_for_sdpa(
|
118 |
+
attention_mask: Optional[torch.Tensor],
|
119 |
+
input_shape: Union[torch.Size, Tuple, List],
|
120 |
+
inputs_embeds: torch.Tensor,
|
121 |
+
past_key_values_length: int,
|
122 |
+
sliding_window: Optional[int] = None,
|
123 |
+
):
|
124 |
+
"""
|
125 |
+
Prepares the correct `attn_mask` argument to be used by `torch.nn.functional.scaled_dot_product_attention`.
|
126 |
+
|
127 |
+
In case no token is masked in the `attention_mask` argument, we simply set it to `None` for the cases `query_length == 1` and
|
128 |
+
`key_value_length == query_length`, and rely instead on SDPA `is_causal` argument to use causal/non-causal masks,
|
129 |
+
allowing to dispatch to the flash attention kernel (that can otherwise not be used if a custom `attn_mask` is passed).
|
130 |
+
"""
|
131 |
+
attn_mask_converter = AttentionMaskConverter(is_causal=False, sliding_window=sliding_window)
|
132 |
+
|
133 |
+
key_value_length = input_shape[-1] + past_key_values_length
|
134 |
+
batch_size, query_length = input_shape
|
135 |
+
|
136 |
+
# torch.jit.trace, symbolic_trace and torchdynamo with fullgraph=True are unable to capture the controlflow `is_causal=attention_mask is None and q_len > 1`
|
137 |
+
# used as an SDPA argument. We keep compatibility with these tracing tools by always using SDPA's `attn_mask` argument in case we are tracing.
|
138 |
+
# TODO: Fix this as well when using torchdynamo with fullgraph=True.
|
139 |
+
is_tracing = torch.jit.is_tracing() or isinstance(inputs_embeds, torch.fx.Proxy)
|
140 |
+
|
141 |
+
if attention_mask is not None:
|
142 |
+
# 4d mask is passed through
|
143 |
+
if len(attention_mask.shape) == 4:
|
144 |
+
expected_shape = (input_shape[0], 1, input_shape[1], key_value_length)
|
145 |
+
if tuple(attention_mask.shape) != expected_shape:
|
146 |
+
raise ValueError(
|
147 |
+
f"Incorrect 4D attention_mask shape: {tuple(attention_mask.shape)}; expected: {expected_shape}."
|
148 |
+
)
|
149 |
+
else:
|
150 |
+
# if the 4D mask has correct shape - invert it and fill with negative infinity
|
151 |
+
inverted_mask = 1.0 - attention_mask.to(inputs_embeds.dtype)
|
152 |
+
attention_mask = inverted_mask.masked_fill(
|
153 |
+
inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min
|
154 |
+
)
|
155 |
+
return attention_mask
|
156 |
+
|
157 |
+
elif not is_tracing and torch.all(attention_mask == 1):
|
158 |
+
if query_length == 1:
|
159 |
+
# For query_length == 1, causal attention and bi-directional attention are the same.
|
160 |
+
attention_mask = None
|
161 |
+
elif key_value_length == query_length:
|
162 |
+
attention_mask = None
|
163 |
+
else:
|
164 |
+
# Unfortunately, for query_length > 1 and key_value_length != query_length, we cannot generally ignore the attention mask, as SDPA causal mask generation
|
165 |
+
# may be wrong. We will set `is_causal=False` in SDPA and rely on Transformers attention_mask instead, hence not setting it to None here.
|
166 |
+
# Reference: https://github.com/pytorch/pytorch/issues/108108
|
167 |
+
pass
|
168 |
+
elif query_length > 1 and key_value_length != query_length:
|
169 |
+
# See the comment above (https://github.com/pytorch/pytorch/issues/108108).
|
170 |
+
# Ugly: we set it to True here to dispatch in the following controlflow to `to_causal_4d`.
|
171 |
+
attention_mask = True
|
172 |
+
elif is_tracing:
|
173 |
+
raise ValueError(
|
174 |
+
'Attention using SDPA can not be traced with torch.jit.trace when no attention_mask is provided. To solve this issue, please either load your model with the argument `attn_implementation="eager"` or pass an attention_mask input when tracing the model.'
|
175 |
+
)
|
176 |
+
|
177 |
+
if attention_mask is None:
|
178 |
+
expanded_4d_mask = None
|
179 |
+
elif attention_mask is True:
|
180 |
+
expanded_4d_mask = attn_mask_converter.to_causal_4d(
|
181 |
+
input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
182 |
+
)
|
183 |
+
else:
|
184 |
+
expanded_4d_mask = attn_mask_converter.to_4d(
|
185 |
+
attention_mask,
|
186 |
+
input_shape[-1],
|
187 |
+
dtype=inputs_embeds.dtype,
|
188 |
+
key_value_length=key_value_length,
|
189 |
+
)
|
190 |
+
|
191 |
+
# From PyTorch 2.1 onwards, F.scaled_dot_product_attention with the memory-efficient attention backend
|
192 |
+
# produces nans if sequences are completely unattended in the attention mask. Details: https://github.com/pytorch/pytorch/issues/110213
|
193 |
+
#
|
194 |
+
# This fix is not applied in case we are tracing with torch.jit.trace or symbolic_trace, as _unmask_unattended has a data-dependent
|
195 |
+
# controlflow that can not be captured properly.
|
196 |
+
# TODO: _unmask_unattended does not work either with torch.compile when using fullgraph=True. We should find a way to detect this case.
|
197 |
+
if query_length > 1 and not is_tracing:
|
198 |
+
expanded_4d_mask = AttentionMaskConverter._unmask_unattended(
|
199 |
+
expanded_4d_mask, attention_mask, unmasked_value=0.0
|
200 |
+
)
|
201 |
+
|
202 |
+
return expanded_4d_mask
|