--- datasets: - McGill-NLP/WebLINX - McGill-NLP/WebLINX-full language: - en metrics: - f1 - iou - chrf library_name: transformers pipeline_tag: text-generation tags: - weblinx - text-generation-inference - web-agents - agents license: llama2 ---

WebLINX: Real-World Website Navigation with Multi-Turn Dialogue

Xing Han Lù*, Zdeněk Kasner*, Siva Reddy
📄Paper
🌐Website
📓Colab
🤗Dataset
💾Code
## Quickstart ```python from datasets import load_dataset from huggingface_hub import snapshot_download from transformers import pipeline # Load validation split valid = load_dataset("McGill-NLP/weblinx", split="validation") # Download and load the templates snapshot_download( "McGill-NLP/WebLINX", repo_type="dataset", allow_patterns="templates/*.txt", local_dir="./" ) with open('templates/llama.txt') as f: template = f.read() turn = valid[0] turn_text = template.format(**turn) # Load action model and input the text to get prediction action_model = pipeline( model="McGill-NLP/Sheared-LLaMA-2.7B-weblinx", device=0, torch_dtype='auto' ) out = action_model(turn_text, return_full_text=False, max_new_tokens=64, truncation=True) pred = out[0]['generated_text'] print("Ref:", turn["action"]) print("Pred:", pred) ``` ## Original Model This model is finetuned on WebLINX using checkpoints previously published on Huggingface Hub.\ [Click here to access the original model.](https://huggingface.co/princeton-nlp/Sheared-LLaMA-2.7B) ## License This model is derived from LLaMA-2, which can only be used with the [LLaMA 2 Community License Agreement](https://github.com/facebookresearch/llama/blob/main/LICENSE). By using or distributing any portion or element of this model, you agree to be bound by this Agreement.