File size: 1,865 Bytes
8a3a2b3
 
 
 
 
 
 
21d096f
8a3a2b3
 
 
 
 
 
21d096f
8a3a2b3
21d096f
8a3a2b3
21d096f
8a3a2b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21d096f
8a3a2b3
 
 
 
 
21d096f
8a3a2b3
 
21d096f
8a3a2b3
 
 
 
 
 
21d096f
 
 
 
 
 
 
 
8a3a2b3
 
 
 
21d096f
 
8a3a2b3
21d096f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
library_name: transformers
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
model-index:
- name: speecht5_finetuned_meenakshi_hindiTTS
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# speecht5_finetuned_meenakshi_hindiTTS

This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6188

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 800
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.7715        | 0.2944 | 100  | 1.2450          |
| 1.0063        | 0.5889 | 200  | 0.8130          |
| 0.8207        | 0.8833 | 300  | 0.7140          |
| 0.7584        | 1.1778 | 400  | 0.6656          |
| 0.7303        | 1.4722 | 500  | 0.6443          |
| 0.7156        | 1.7667 | 600  | 0.6361          |
| 0.6937        | 2.0611 | 700  | 0.6176          |
| 0.6855        | 2.3555 | 800  | 0.6188          |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.0.2
- Tokenizers 0.19.1