--- base_model: dmis-lab/biobert-v1.1 tags: - generated_from_trainer metrics: - precision - recall - accuracy - f1 model-index: - name: sentence-classifiert results: [] --- # sentence-classifiert This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3410 - Precision: 0.9085 - Recall: 0.9068 - Accuracy: 0.9072 - F1: 0.9072 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--------:|:------:| | No log | 1.0 | 154 | 0.4158 | 0.8549 | 0.8445 | 0.8438 | 0.8443 | | No log | 2.0 | 308 | 0.3426 | 0.8875 | 0.8804 | 0.8796 | 0.8787 | | No log | 3.0 | 462 | 0.3594 | 0.8945 | 0.8856 | 0.8869 | 0.8868 | | 0.3638 | 4.0 | 616 | 0.3302 | 0.9034 | 0.9008 | 0.9015 | 0.9014 | | 0.3638 | 5.0 | 770 | 0.3410 | 0.9085 | 0.9068 | 0.9072 | 0.9072 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2