Model save
Browse files
README.md
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: facebook/vit-msn-small
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- imagefolder
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: vit-msn-small-corect_dataset_lateral_flow_ivalidation
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Image Classification
|
16 |
+
type: image-classification
|
17 |
+
dataset:
|
18 |
+
name: imagefolder
|
19 |
+
type: imagefolder
|
20 |
+
config: default
|
21 |
+
split: test
|
22 |
+
args: default
|
23 |
+
metrics:
|
24 |
+
- name: Accuracy
|
25 |
+
type: accuracy
|
26 |
+
value: 0.8791208791208791
|
27 |
+
---
|
28 |
+
|
29 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
30 |
+
should probably proofread and complete it, then remove this comment. -->
|
31 |
+
|
32 |
+
# vit-msn-small-corect_dataset_lateral_flow_ivalidation
|
33 |
+
|
34 |
+
This model is a fine-tuned version of [facebook/vit-msn-small](https://huggingface.co/facebook/vit-msn-small) on the imagefolder dataset.
|
35 |
+
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.3307
|
37 |
+
- Accuracy: 0.8791
|
38 |
+
|
39 |
+
## Model description
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Intended uses & limitations
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training and evaluation data
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training procedure
|
52 |
+
|
53 |
+
### Training hyperparameters
|
54 |
+
|
55 |
+
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 5e-05
|
57 |
+
- train_batch_size: 64
|
58 |
+
- eval_batch_size: 64
|
59 |
+
- seed: 42
|
60 |
+
- gradient_accumulation_steps: 4
|
61 |
+
- total_train_batch_size: 256
|
62 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
+
- lr_scheduler_type: linear
|
64 |
+
- lr_scheduler_warmup_ratio: 0.1
|
65 |
+
- num_epochs: 40
|
66 |
+
|
67 |
+
### Training results
|
68 |
+
|
69 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
70 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|
|
71 |
+
| No log | 0.9231 | 3 | 0.6350 | 0.6337 |
|
72 |
+
| No log | 1.8462 | 6 | 0.5047 | 0.8022 |
|
73 |
+
| No log | 2.7692 | 9 | 0.3701 | 0.8791 |
|
74 |
+
| 0.5485 | 4.0 | 13 | 0.5379 | 0.7436 |
|
75 |
+
| 0.5485 | 4.9231 | 16 | 0.2748 | 0.8938 |
|
76 |
+
| 0.5485 | 5.8462 | 19 | 0.3004 | 0.8974 |
|
77 |
+
| 0.3335 | 6.7692 | 22 | 0.3492 | 0.8681 |
|
78 |
+
| 0.3335 | 8.0 | 26 | 0.2497 | 0.8974 |
|
79 |
+
| 0.3335 | 8.9231 | 29 | 0.4304 | 0.8315 |
|
80 |
+
| 0.3087 | 9.8462 | 32 | 0.3479 | 0.8791 |
|
81 |
+
| 0.3087 | 10.7692 | 35 | 0.3796 | 0.8645 |
|
82 |
+
| 0.3087 | 12.0 | 39 | 0.4152 | 0.8352 |
|
83 |
+
| 0.2614 | 12.9231 | 42 | 0.3199 | 0.9011 |
|
84 |
+
| 0.2614 | 13.8462 | 45 | 0.3434 | 0.8718 |
|
85 |
+
| 0.2614 | 14.7692 | 48 | 0.4001 | 0.8462 |
|
86 |
+
| 0.2471 | 16.0 | 52 | 0.3220 | 0.8901 |
|
87 |
+
| 0.2471 | 16.9231 | 55 | 0.3540 | 0.8718 |
|
88 |
+
| 0.2471 | 17.8462 | 58 | 0.4019 | 0.8535 |
|
89 |
+
| 0.2817 | 18.7692 | 61 | 0.3152 | 0.8974 |
|
90 |
+
| 0.2817 | 20.0 | 65 | 0.3978 | 0.8571 |
|
91 |
+
| 0.2817 | 20.9231 | 68 | 0.4289 | 0.8388 |
|
92 |
+
| 0.2353 | 21.8462 | 71 | 0.3146 | 0.8974 |
|
93 |
+
| 0.2353 | 22.7692 | 74 | 0.3206 | 0.8864 |
|
94 |
+
| 0.2353 | 24.0 | 78 | 0.3715 | 0.8828 |
|
95 |
+
| 0.2339 | 24.9231 | 81 | 0.3446 | 0.8938 |
|
96 |
+
| 0.2339 | 25.8462 | 84 | 0.2930 | 0.9048 |
|
97 |
+
| 0.2339 | 26.7692 | 87 | 0.4349 | 0.8205 |
|
98 |
+
| 0.2301 | 28.0 | 91 | 0.3630 | 0.8681 |
|
99 |
+
| 0.2301 | 28.9231 | 94 | 0.3669 | 0.8645 |
|
100 |
+
| 0.2301 | 29.8462 | 97 | 0.5037 | 0.7912 |
|
101 |
+
| 0.2115 | 30.7692 | 100 | 0.3449 | 0.8828 |
|
102 |
+
| 0.2115 | 32.0 | 104 | 0.3280 | 0.9011 |
|
103 |
+
| 0.2115 | 32.9231 | 107 | 0.4031 | 0.8425 |
|
104 |
+
| 0.2033 | 33.8462 | 110 | 0.3612 | 0.8535 |
|
105 |
+
| 0.2033 | 34.7692 | 113 | 0.3163 | 0.8901 |
|
106 |
+
| 0.2033 | 36.0 | 117 | 0.3234 | 0.8864 |
|
107 |
+
| 0.1807 | 36.9231 | 120 | 0.3307 | 0.8791 |
|
108 |
+
|
109 |
+
|
110 |
+
### Framework versions
|
111 |
+
|
112 |
+
- Transformers 4.44.2
|
113 |
+
- Pytorch 2.4.1+cu121
|
114 |
+
- Datasets 3.2.0
|
115 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 86688624
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3936d2d3648651f2b8d7c78b02d9c5709fd77b556e4d35c55205086e30b88b81
|
3 |
size 86688624
|
runs/Jan14_14-09-03_c583982b4f3d/events.out.tfevents.1736863753.c583982b4f3d.215.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8fa4946256602f89de3ad2e03da126348902ed255f87e2145318c9e18b27f8b9
|
3 |
+
size 19570
|