--- library_name: transformers license: apache-2.0 base_model: facebook/vit-msn-small tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-msn-small-wbc-classifier-0316-cleaned-dataset-10 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.893532776066872 --- # vit-msn-small-wbc-classifier-0316-cleaned-dataset-10 This model is a fine-tuned version of [facebook/vit-msn-small](https://huggingface.co/facebook/vit-msn-small) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3538 - Accuracy: 0.8935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5193 | 1.0 | 16 | 0.6823 | 0.7945 | | 0.5339 | 2.0 | 32 | 0.4553 | 0.8438 | | 0.4778 | 3.0 | 48 | 0.4525 | 0.8478 | | 0.4253 | 4.0 | 64 | 0.4077 | 0.8473 | | 0.4086 | 5.0 | 80 | 0.4218 | 0.8575 | | 0.3673 | 6.0 | 96 | 0.4002 | 0.8693 | | 0.3275 | 7.0 | 112 | 0.3302 | 0.8773 | | 0.3231 | 8.0 | 128 | 0.3672 | 0.8803 | | 0.302 | 9.0 | 144 | 0.3363 | 0.8900 | | 0.3122 | 10.0 | 160 | 0.3284 | 0.8843 | | 0.2686 | 11.0 | 176 | 0.3317 | 0.8874 | | 0.2786 | 12.0 | 192 | 0.3660 | 0.8883 | | 0.2338 | 13.0 | 208 | 0.3520 | 0.8834 | | 0.2466 | 14.0 | 224 | 0.3414 | 0.8896 | | 0.2296 | 15.0 | 240 | 0.3531 | 0.8874 | | 0.1961 | 16.0 | 256 | 0.3844 | 0.8847 | | 0.2056 | 17.0 | 272 | 0.3705 | 0.8900 | | 0.197 | 18.0 | 288 | 0.3538 | 0.8935 | | 0.1748 | 19.0 | 304 | 0.3717 | 0.8887 | | 0.1807 | 20.0 | 320 | 0.4075 | 0.8843 | | 0.177 | 21.0 | 336 | 0.3881 | 0.8830 | | 0.1433 | 22.0 | 352 | 0.4014 | 0.8856 | | 0.1522 | 23.0 | 368 | 0.3918 | 0.8874 | | 0.1322 | 24.0 | 384 | 0.4199 | 0.8905 | | 0.1396 | 25.0 | 400 | 0.4142 | 0.8896 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1