--- library_name: transformers license: apache-2.0 base_model: facebook/vit-msn-small tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-msn-small-wbc-classifier-cells-separated-dataset-agregates-25 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9400918591493044 --- # vit-msn-small-wbc-classifier-cells-separated-dataset-agregates-25 This model is a fine-tuned version of [facebook/vit-msn-small](https://huggingface.co/facebook/vit-msn-small) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1790 - Accuracy: 0.9401 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.351 | 0.9937 | 119 | 0.2523 | 0.9151 | | 0.3364 | 1.9958 | 239 | 0.2355 | 0.9195 | | 0.2999 | 2.9979 | 359 | 0.2384 | 0.9169 | | 0.2861 | 4.0 | 479 | 0.1902 | 0.9341 | | 0.3014 | 4.9937 | 598 | 0.2154 | 0.9290 | | 0.292 | 5.9958 | 718 | 0.1764 | 0.9383 | | 0.2441 | 6.9979 | 838 | 0.1894 | 0.9348 | | 0.2416 | 8.0 | 958 | 0.1913 | 0.9349 | | 0.2642 | 8.9937 | 1077 | 0.1738 | 0.9385 | | 0.2482 | 9.9958 | 1197 | 0.1911 | 0.9371 | | 0.2279 | 10.9979 | 1317 | 0.1867 | 0.9381 | | 0.2331 | 12.0 | 1437 | 0.1814 | 0.9389 | | 0.2208 | 12.9937 | 1556 | 0.1790 | 0.9401 | | 0.2326 | 13.9958 | 1676 | 0.1926 | 0.9366 | | 0.1899 | 14.9979 | 1796 | 0.1975 | 0.9372 | | 0.1822 | 16.0 | 1916 | 0.2052 | 0.9352 | | 0.1837 | 16.9937 | 2035 | 0.2078 | 0.9364 | | 0.1712 | 17.9958 | 2155 | 0.2345 | 0.9288 | | 0.1715 | 18.9979 | 2275 | 0.2156 | 0.9368 | | 0.1516 | 20.0 | 2395 | 0.2279 | 0.9368 | | 0.1504 | 20.9937 | 2514 | 0.2213 | 0.9382 | | 0.139 | 21.9958 | 2634 | 0.2247 | 0.9370 | | 0.1264 | 22.9979 | 2754 | 0.2357 | 0.9384 | | 0.1266 | 24.0 | 2874 | 0.2360 | 0.9381 | | 0.1144 | 24.8434 | 2975 | 0.2370 | 0.9375 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1