Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- HuggingFaceFW/fineweb-2
|
5 |
+
language:
|
6 |
+
- ru
|
7 |
+
metrics:
|
8 |
+
- character
|
9 |
+
base_model:
|
10 |
+
- meta-llama/Llama-3.3-70B-Instruct
|
11 |
+
new_version: meta-llama/Llama-3.3-70B-Instruct
|
12 |
+
pipeline_tag: translation
|
13 |
+
library_name: adapter-transformers
|
14 |
+
---
|
15 |
+
import sagemaker
|
16 |
+
import boto3
|
17 |
+
from sagemaker.huggingface import HuggingFace
|
18 |
+
|
19 |
+
try:
|
20 |
+
role = sagemaker.get_execution_role()
|
21 |
+
except ValueError:
|
22 |
+
iam = boto3.client('iam')
|
23 |
+
role = iam.get_role(RoleName='sagemaker_execution_role')['Role']['Arn']
|
24 |
+
|
25 |
+
hyperparameters = {
|
26 |
+
'model_name_or_path':'issai/LLama-3.1-KazLLM-1.0-8B',
|
27 |
+
'output_dir':'/opt/ml/model'
|
28 |
+
# add your remaining hyperparameters
|
29 |
+
# more info here https://github.com/huggingface/transformers/tree/v4.37.0/examples/pytorch/seq2seq
|
30 |
+
}
|
31 |
+
|
32 |
+
# git configuration to download our fine-tuning script
|
33 |
+
git_config = {'repo': 'https://github.com/huggingface/transformers.git','branch': 'v4.37.0'}
|
34 |
+
|
35 |
+
# creates Hugging Face estimator
|
36 |
+
huggingface_estimator = HuggingFace(
|
37 |
+
entry_point='run_translation.py',
|
38 |
+
source_dir='./examples/pytorch/seq2seq',
|
39 |
+
instance_type='ml.p3.2xlarge',
|
40 |
+
instance_count=1,
|
41 |
+
role=role,
|
42 |
+
git_config=git_config,
|
43 |
+
transformers_version='4.37.0',
|
44 |
+
pytorch_version='2.1.0',
|
45 |
+
py_version='py310',
|
46 |
+
hyperparameters = hyperparameters
|
47 |
+
)
|
48 |
+
|
49 |
+
# starting the train job
|
50 |
+
huggingface_estimator.fit()
|