{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f13599e5580>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681568798435656708, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAI6BeL4dNai+WPDtPpinsT6vdWG+3QN5vrwWFb2fugQ/ZMMUvna1Hr+TK2K/OWSbv2UKJL9zRgy8qqtdvUiKPD+fvUg+vu+LPxuuC76mclLAPA9xv2Nj6D7W4hI+PX8BP5l6rL/BQMU+P2DhPn5ogj/gMdi+UskKPxyzID8FiBc+oHdAPy1Snr2VVvc+t3czP4gSgz6IuKW/iE1Zv9vxM8AsgY6/UJ6Zva6twr7IKlw+0oeMPhCexz9t7sw+nHgGwIsIfb/0aDI+kXu1vsIdCT6Zeqy/wUDFPoJkEcB+aII/p703v5NJKD92jxk/tBBUPx/mFT+LoZm+kslAvi298T4gbzI/8ePVviPzLb/oCLU/M7wMvr51nj29z60+Mn8gPox6uT8j3gK/yHR+vchhWj5A5Wi/s+9ovRgbGr0waai+mXqsv8FAxT4/YOE+fmiCPy4/VL+/MDA/MSMXP/hVmT+0iWI/xUeLP7Xnib1is/C+1rJ0P0pIC75YA56+YwIgP2ZSrb8EVDzAbBwVP6vgDcDJKWQ+cG7Zv5dTMT+PGaY/hGd/PnIF1L9mpf2+FGoQP4/7PT8oHybAP2DhPsdFe7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACsEpw2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACABjq2PQAAAAD8HuO/AAAAAI5+ej0AAAAAcND5PwAAAABNlro9AAAAAKIc3z8AAAAALaASvgAAAACCsve/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8/mVtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMF3Wr0AAAAAAUnZvwAAAAD1nFS9AAAAAAkZ5D8AAAAAUTe1vQAAAABtgvo/AAAAAPUmzz0AAAAAU8ncvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGrb1LYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIADxo88AAAAACMo678AAAAA28D1vQAAAABfmfU/AAAAAPYsYr0AAAAANaDaPwAAAAAY9KQ9AAAAAM507b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/Kxq3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAyG8RPgAAAACdSeq/AAAAAJ0r070AAAAATWvjPwAAAAD6R6a9AAAAAIMG5z8AAAAAfFeZPQAAAADidfy/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJa+6izsyBWMAWyUTegDjAF0lEdAsSWXLSuyNXV9lChoBkdAlEnpRsMy8GgHTegDaAhHQLEnJDW9US91fZQoaAZHQJfJFRfnfVJoB03oA2gIR0CxKoJUT+NtdX2UKGgGR0CXaSlbeMyaaAdN6ANoCEdAsS0R/WlMy3V9lChoBkdAjmJMa86FNGgHTegDaAhHQLEuKgLJCBx1fZQoaAZHQJcYheWv8qFoB03oA2gIR0CxL8hZ+x4ZdX2UKGgGR0CTphLsKLKnaAdN6ANoCEdAsTMMCtA9m3V9lChoBkdAkzNzOxB3R2gHTegDaAhHQLE0uM9r4351fZQoaAZHQJRrr7/GVA1oB03oA2gIR0CxNXTWwu/UdX2UKGgGR0CSgxDLbHp9aAdN6ANoCEdAsTa8H4XXRXV9lChoBkdAlSvUUGmk32gHTegDaAhHQLE6LL5ylvZ1fZQoaAZHQJil1sImgJ1oB03oA2gIR0CxPKljmSyMdX2UKGgGR0CTBWXoTwlTaAdN6ANoCEdAsT3GT9sJpnV9lChoBkdAlW5K2fChvmgHTegDaAhHQLE/VnYQJ5V1fZQoaAZHQIQLdLxqfvpoB03oA2gIR0CxQocO9WZJdX2UKGgGR0CUwdtVrAP/aAdN6ANoCEdAsUQ2LS/j83V9lChoBkdAlZ3y2x6fJ2gHTegDaAhHQLFE7oAn2Ix1fZQoaAZHQIXLiIFeOXFoB03oA2gIR0CxRkne7+UAdX2UKGgGR0CLJ1i/fwZwaAdN6ANoCEdAsUoYjHGS6nV9lChoBkdAhtQYixFAmmgHTegDaAhHQLFMynp0OmR1fZQoaAZHQIhj12C/XXloB03oA2gIR0CxTdRgZ0jkdX2UKGgGR0B4pbcKw6hhaAdN6ANoCEdAsU8hPj4pMHV9lChoBkdAmCAix7iQ1mgHTegDaAhHQLFSRi6QNkR1fZQoaAZHQIRNqXrt3OhoB03oA2gIR0CxU/qEnLJTdX2UKGgGR0CX9ZZXdTHbaAdN6ANoCEdAsVSyvhZQpHV9lChoBkdAlrE71M/QjWgHTegDaAhHQLFWAQ+UyHp1fZQoaAZHQI34v2Xb/OtoB03oA2gIR0CxWb7bcoH+dX2UKGgGR0Ca3T6wMYuTaAdN6ANoCEdAsVxM0Jng53V9lChoBkdAlewkR3/xUmgHTegDaAhHQLFdQpcX3xp1fZQoaAZHQJeJeXv6TGJoB03oA2gIR0CxXpPn0TURdX2UKGgGR0CTZs3ta6jGaAdN6ANoCEdAsWG+AG0NSnV9lChoBkdAlN4SzC1qnGgHTegDaAhHQLFjamzSkTJ1fZQoaAZHQJfFHMotthxoB03oA2gIR0CxZBjo+wC9dX2UKGgGR0CX2dsCkoF3aAdN6ANoCEdAsWVovalDW3V9lChoBkdAmNjGGmDUVmgHTegDaAhHQLFpHdld1Md1fZQoaAZHQJMyp0+1SfloB03oA2gIR0Cxa86u0TlDdX2UKGgGR0CYWve/Ho5haAdN6ANoCEdAsWy4/PgNw3V9lChoBkdAmIcKveP7vWgHTegDaAhHQLFuCUwSJ0p1fZQoaAZHQJmqRTYNAkdoB03oA2gIR0CxcSPcafjCdX2UKGgGR0CVOEnlGPPtaAdN6ANoCEdAsXLTfGdZq3V9lChoBkdAmJqrUgB91GgHTegDaAhHQLFzjN7Bwdd1fZQoaAZHQJVPlwl0HQhoB03oA2gIR0CxdN1Z5iVjdX2UKGgGR0CXQas+V1OkaAdN6ANoCEdAsXi41BMSK3V9lChoBkdAmImjVc2R72gHTegDaAhHQLF7Z89wFTx1fZQoaAZHQJrioMjNY8xoB03oA2gIR0CxfFKdUbT+dX2UKGgGR0CaNS77Kq4paAdN6ANoCEdAsX3ETQE6k3V9lChoBkdAgrRJ6po9LmgHTegDaAhHQLGA8P8Q7Ld1fZQoaAZHQJCREMa0hNdoB03oA2gIR0CxgqsrqdH2dX2UKGgGR0CWXaCKrJbMaAdN6ANoCEdAsYNmPdVNpXV9lChoBkdAlnk/iHZbp2gHTegDaAhHQLGErs67ulZ1fZQoaAZHQJa9inyd4FBoB03oA2gIR0CxiIL+tKZldX2UKGgGR0CaF+7g88s+aAdN6ANoCEdAsYsY8NhE0HV9lChoBkdAl5ZOSB9TgmgHTegDaAhHQLGL2LrX18N1fZQoaAZHQJkE2JWNm19oB03oA2gIR0CxjSVTm4iHdX2UKGgGR0CXCva+N96UaAdN6ANoCEdAsZA12nsLOXV9lChoBkdAmXwC0jTrmmgHTegDaAhHQLGR2mReTmp1fZQoaAZHQJeOtx5s0pFoB03oA2gIR0CxkpbgXMyKdX2UKGgGR0CY1A2dNFjNaAdN6ANoCEdAsZPjqiXY2HV9lChoBkdAlJWn+AEt/WgHTegDaAhHQLGXwvysjml1fZQoaAZHQH2cvRZ2ZApoB03oA2gIR0Cxmmsvh60IdX2UKGgGR0CXa5fOlfqpaAdN6ANoCEdAsZstaA4GU3V9lChoBkdAlf3wHqu8smgHTegDaAhHQLGcfNqQA+91fZQoaAZHQJalmASWZ7ZoB03oA2gIR0Cxn4jrNW2gdX2UKGgGR0CXKqHxz7uVaAdN6ANoCEdAsaElYGMXJ3V9lChoBkdAjpCRSHdoFmgHTegDaAhHQLGh2LQHAyp1fZQoaAZHQJVAq46Oo5xoB03oA2gIR0CxoyitvGZNdX2UKGgGR0CXABQ7LdN4aAdN6ANoCEdAsabcBjnV5XV9lChoBkdAlv92ax5cDGgHTegDaAhHQLGpfD8Lrop1fZQoaAZHQJif5yeZof1oB03oA2gIR0CxqlsVYZEVdX2UKGgGR0CWIzV2Rq46aAdN6ANoCEdAsaueEvkBCHV9lChoBkdAlGvKgM+eOGgHTegDaAhHQLGupgy/KyR1fZQoaAZHQJYxlvjwQUZoB03oA2gIR0CxsEP336AOdX2UKGgGR0CWZbHq/ub7aAdN6ANoCEdAsbD1U2kzoHV9lChoBkdAmMJmzfJmumgHTegDaAhHQLGyQe6I3zd1fZQoaAZHQJdD3OpsGgVoB03oA2gIR0Cxte8FpwjudX2UKGgGR0CXIbrNW2gGaAdN6ANoCEdAsbiALE1l5HV9lChoBkdAlfXKGDcuamgHTegDaAhHQLG5gSowVTJ1fZQoaAZHQJc68yWRigFoB03oA2gIR0CxutB/3FkydX2UKGgGR0CXS6lGPPszaAdN6ANoCEdAsb3QOhCdBnV9lChoBkdAl4/VZHNHH2gHTegDaAhHQLG/azJ6po91fZQoaAZHQJYxynn+yZ9oB03oA2gIR0CxwCA4S6DodX2UKGgGR0CYHrl4TsY3aAdN6ANoCEdAscFsKOT7mHV9lChoBkfAP6q+vhZQpGgHS4BoCEdAscJEKqn3tnV9lChoBkdAl+ELncL0BmgHTegDaAhHQLHE/OnEVFh1fZQoaAZHQJh7jgccU/RoB03oA2gIR0Cxx5I8uBczdX2UKGgGR0CYSC85CF9KaAdN6ANoCEdAscintqpLmXV9lChoBkdAl4vL349HMGgHTegDaAhHQLHK0DG96C11fZQoaAZHQJjci45Lh75oB03oA2gIR0CxzQoUeuFIdX2UKGgGR0CYM4NoJzDGaAdN6ANoCEdAsc67leWv83V9lChoBkdAmD5ebutwJmgHTegDaAhHQLHPeNBWxQl1fZQoaAZHQJhQE76pHZtoB03oA2gIR0Cx0au2mYShdX2UKGgGR0CWFLJPZZjhaAdN6ANoCEdAsdRv+Q2dd3V9lChoBkdAl6vi5Etuk2gHTegDaAhHQLHXEPzFuNx1fZQoaAZHQJNPVb2USqVoB03oA2gIR0Cx2Cy6tknUdX2UKGgGR0CV62FkQPI5aAdN6ANoCEdAsdpcxQBPsXV9lChoBkdAlzBt7KJVKmgHTegDaAhHQLHdLyVv/BF1fZQoaAZHQJdAjBdld1NoB03oA2gIR0Cx38O9Jz1cdX2UKGgGR0CYZkm4iHIqaAdN6ANoCEdAseC4bgjyF3V9lChoBkdAmNY2f5DZ12gHTegDaAhHQLHjPv114gR1fZQoaAZHQJmedFPSDyxoB03oA2gIR0Cx5rCN83MqdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}