diff --git "a/florence-2-large/modeling_florence2.py" "b/florence-2-large/modeling_florence2.py" deleted file mode 100644--- "a/florence-2-large/modeling_florence2.py" +++ /dev/null @@ -1,2847 +0,0 @@ -# coding=utf-8 -# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -""" PyTorch Florence-2 model.""" -from dataclasses import dataclass -from typing import List, Optional, Tuple, Union - -import math -import torch -import torch.utils.checkpoint -from torch import nn -import torch.nn.functional as F -import torch.utils.checkpoint as checkpoint -from torch.nn import CrossEntropyLoss -from collections import OrderedDict -from einops import rearrange -from timm.models.layers import DropPath, trunc_normal_ - -from transformers.modeling_utils import PreTrainedModel -from transformers.utils import ( - ModelOutput, - add_start_docstrings, - add_start_docstrings_to_model_forward, - is_flash_attn_2_available, - logging, - replace_return_docstrings, - is_flash_attn_2_available, - is_flash_attn_greater_or_equal_2_10, -) -from .configuration_florence2 import Florence2Config -from .configuration_florence2 import Florence2LanguageConfig -from .configuration_florence2 import Florence2VisionConfig - - -from transformers.activations import ACT2FN -from transformers.modeling_attn_mask_utils import ( - _prepare_4d_attention_mask, - _prepare_4d_attention_mask_for_sdpa, - _prepare_4d_causal_attention_mask, - _prepare_4d_causal_attention_mask_for_sdpa, -) -from transformers.modeling_outputs import ( - BaseModelOutput, - BaseModelOutputWithPastAndCrossAttentions, - Seq2SeqLMOutput, - Seq2SeqModelOutput, -) - - -if is_flash_attn_2_available(): - from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa - -logger = logging.get_logger(__name__) - -_CONFIG_FOR_DOC = "Florence2Config" - -class LearnedAbsolutePositionEmbedding2D(nn.Module): - """ - This module learns positional embeddings up to a fixed maximum size. - """ - - def __init__(self, embedding_dim=256, num_pos=50): - super().__init__() - self.row_embeddings = nn.Embedding(num_pos, embedding_dim // 2) - self.column_embeddings = nn.Embedding(num_pos, embedding_dim - (embedding_dim // 2)) - - def forward(self, pixel_values): - """ - pixel_values: (batch_size, height, width, num_channels) - returns: (batch_size, height, width, embedding_dim * 2) - """ - if len(pixel_values.shape) != 4: - raise ValueError('pixel_values must be a 4D tensor') - height, width = pixel_values.shape[1:3] - width_values = torch.arange(width, device=pixel_values.device) - height_values = torch.arange(height, device=pixel_values.device) - x_emb = self.column_embeddings(width_values) - y_emb = self.row_embeddings(height_values) - # (height, width, embedding_dim * 2) - pos = torch.cat([x_emb.unsqueeze(0).repeat(height, 1, 1), y_emb.unsqueeze(1).repeat(1, width, 1)], dim=-1) - # (embedding_dim * 2, height, width) - pos = pos.permute(2, 0, 1) - pos = pos.unsqueeze(0) - # (batch_size, embedding_dim * 2, height, width) - pos = pos.repeat(pixel_values.shape[0], 1, 1, 1) - # (batch_size, height, width, embedding_dim * 2) - pos = pos.permute(0, 2, 3, 1) - return pos - -class PositionalEmbeddingCosine1D(nn.Module): - """ - This class implements a very simple positional encoding. It follows closely - the encoder from the link below: - https://pytorch.org/tutorials/beginner/translation_transformer.html - - Args: - embed_dim: The dimension of the embeddings. - dropout_prob: The dropout probability. - max_seq_len: The maximum length to precompute the positional encodings. - """ - def __init__( - self, - embed_dim: int = 512, - max_seq_len: int = 1024) -> None: - super(PositionalEmbeddingCosine1D, self).__init__() - self.embed_dim = embed_dim - self.max_seq_len = max_seq_len - # Generate the sinusoidal arrays. - factor = math.log(10000) - denominator = torch.exp( - -factor * torch.arange(0, self.embed_dim, 2) / self.embed_dim) - # Matrix where rows correspond to a positional embedding as a function - # of the position index (i.e., the row index). - frequencies = \ - torch.arange(0, self.max_seq_len) \ - .reshape(self.max_seq_len, 1) * denominator - pos_idx_to_embed = torch.zeros((self.max_seq_len, self.embed_dim)) - # Populate uneven entries. - pos_idx_to_embed[:, 0::2] = torch.sin(frequencies) - pos_idx_to_embed[:, 1::2] = torch.cos(frequencies) - # Save the positional embeddings in a constant buffer. - self.register_buffer("pos_idx_to_embed", pos_idx_to_embed) - - def forward(self, seq_embeds: torch.Tensor) -> torch.Tensor: - """ - Args: - seq_embeds: The sequence embeddings in order. Allowed size: - 1. [T, D], where T is the length of the sequence, and D is the - frame embedding dimension. - 2. [B, T, D], where B is the batch size and T and D are the - same as above. - - Returns a tensor of with the same dimensions as the input: i.e., - [1, T, D] or [T, D]. - """ - shape_len = len(seq_embeds.shape) - assert 2 <= shape_len <= 3 - len_seq = seq_embeds.size(-2) - assert len_seq <= self.max_seq_len - pos_embeds = self.pos_idx_to_embed[0:seq_embeds.size(-2), :] - # Adapt pre-computed positional embeddings to the input. - if shape_len == 3: - pos_embeds = pos_embeds.view( - (1, pos_embeds.size(0), pos_embeds.size(1))) - return pos_embeds - - -class LearnedAbsolutePositionEmbedding1D(nn.Module): - """ - Learnable absolute positional embeddings for 1D sequences. - - Args: - embed_dim: The dimension of the embeddings. - max_seq_len: The maximum length to precompute the positional encodings. - """ - def __init__( - self, - embedding_dim: int = 512, - num_pos: int = 1024) -> None: - super(LearnedAbsolutePositionEmbedding1D, self).__init__() - self.embeddings = nn.Embedding(num_pos, embedding_dim) - self.num_pos = num_pos - - def forward(self, seq_embeds: torch.Tensor) -> torch.Tensor: - """ - Args: - seq_embeds: The sequence embeddings in order. Allowed size: - 1. [T, D], where T is the length of the sequence, and D is the - frame embedding dimension. - 2. [B, T, D], where B is the batch size and T and D are the - same as above. - - Returns a tensor of with the same dimensions as the input: i.e., - [1, T, D] or [T, D]. - """ - shape_len = len(seq_embeds.shape) - assert 2 <= shape_len <= 3 - len_seq = seq_embeds.size(-2) - assert len_seq <= self.num_pos - # [T, D] - pos_embeds = self.embeddings(torch.arange(len_seq).to(seq_embeds.device)) - # Adapt pre-computed positional embeddings to the input. - if shape_len == 3: - pos_embeds = pos_embeds.view( - (1, pos_embeds.size(0), pos_embeds.size(1))) - return pos_embeds - - - -class MySequential(nn.Sequential): - def forward(self, *inputs): - for module in self._modules.values(): - if type(inputs) == tuple: - inputs = module(*inputs) - else: - inputs = module(inputs) - return inputs - - -class PreNorm(nn.Module): - def __init__(self, norm, fn, drop_path=None): - super().__init__() - self.norm = norm - self.fn = fn - self.drop_path = drop_path - - def forward(self, x, *args, **kwargs): - shortcut = x - if self.norm != None: - x, size = self.fn(self.norm(x), *args, **kwargs) - else: - x, size = self.fn(x, *args, **kwargs) - - if self.drop_path: - x = self.drop_path(x) - - x = shortcut + x - - return x, size - - -class Mlp(nn.Module): - def __init__( - self, - in_features, - hidden_features=None, - out_features=None, - act_layer=nn.GELU, - ): - super().__init__() - out_features = out_features or in_features - hidden_features = hidden_features or in_features - self.net = nn.Sequential(OrderedDict([ - ("fc1", nn.Linear(in_features, hidden_features)), - ("act", act_layer()), - ("fc2", nn.Linear(hidden_features, out_features)) - ])) - - def forward(self, x, size): - return self.net(x), size - - -class DepthWiseConv2d(nn.Module): - def __init__( - self, - dim_in, - kernel_size, - padding, - stride, - bias=True, - ): - super().__init__() - self.dw = nn.Conv2d( - dim_in, dim_in, - kernel_size=kernel_size, - padding=padding, - groups=dim_in, - stride=stride, - bias=bias - ) - - def forward(self, x, size): - B, N, C = x.shape - H, W = size - assert N == H * W - - x = self.dw(x.transpose(1, 2).view(B, C, H, W)) - size = (x.size(-2), x.size(-1)) - x = x.flatten(2).transpose(1, 2) - return x, size - - -class ConvEmbed(nn.Module): - """ Image to Patch Embedding - """ - - def __init__( - self, - patch_size=7, - in_chans=3, - embed_dim=64, - stride=4, - padding=2, - norm_layer=None, - pre_norm=True - ): - super().__init__() - self.patch_size = patch_size - - self.proj = nn.Conv2d( - in_chans, embed_dim, - kernel_size=patch_size, - stride=stride, - padding=padding - ) - - dim_norm = in_chans if pre_norm else embed_dim - self.norm = norm_layer(dim_norm) if norm_layer else None - - self.pre_norm = pre_norm - - def forward(self, x, size): - H, W = size - if len(x.size()) == 3: - if self.norm and self.pre_norm: - x = self.norm(x) - x = rearrange( - x, 'b (h w) c -> b c h w', - h=H, w=W - ) - - x = self.proj(x) - - _, _, H, W = x.shape - x = rearrange(x, 'b c h w -> b (h w) c') - if self.norm and not self.pre_norm: - x = self.norm(x) - - return x, (H, W) - - -class ChannelAttention(nn.Module): - - def __init__(self, dim, groups=8, qkv_bias=True): - super().__init__() - - self.groups = groups - self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) - self.proj = nn.Linear(dim, dim) - - def forward(self, x, size): - B, N, C = x.shape - - qkv = self.qkv(x).reshape(B, N, 3, self.groups, C // self.groups).permute(2, 0, 3, 1, 4) - q, k, v = qkv[0], qkv[1], qkv[2] - - q = q * (float(N) ** -0.5) - attention = q.transpose(-1, -2) @ k - attention = attention.softmax(dim=-1) - x = (attention @ v.transpose(-1, -2)).transpose(-1, -2) - x = x.transpose(1, 2).reshape(B, N, C) - x = self.proj(x) - return x, size - - -class ChannelBlock(nn.Module): - - def __init__(self, dim, groups, mlp_ratio=4., qkv_bias=True, - drop_path_rate=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, - conv_at_attn=True, conv_at_ffn=True): - super().__init__() - - drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() - - self.conv1 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None - self.channel_attn = PreNorm( - norm_layer(dim), - ChannelAttention(dim, groups=groups, qkv_bias=qkv_bias), - drop_path - ) - self.conv2 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None - self.ffn = PreNorm( - norm_layer(dim), - Mlp(in_features=dim, hidden_features=int(dim*mlp_ratio), act_layer=act_layer), - drop_path - ) - - def forward(self, x, size): - if self.conv1: - x, size = self.conv1(x, size) - x, size = self.channel_attn(x, size) - - if self.conv2: - x, size = self.conv2(x, size) - x, size = self.ffn(x, size) - - return x, size - - -def window_partition(x, window_size: int): - B, H, W, C = x.shape - x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) - windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) - return windows - - -def window_reverse(windows, batch_size: int, window_size: int, H: int, W: int): - B = batch_size - # this will cause onnx conversion failed for dynamic axis, because treated as constant - # int(windows.shape[0] / (H * W / window_size / window_size)) - x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) - x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) - return x - - -class WindowAttention(nn.Module): - def __init__(self, dim, num_heads, window_size, qkv_bias=True): - - super().__init__() - self.dim = dim - self.window_size = window_size - self.num_heads = num_heads - head_dim = dim // num_heads - self.scale = float(head_dim) ** -0.5 - - self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) - self.proj = nn.Linear(dim, dim) - - self.softmax = nn.Softmax(dim=-1) - - def forward(self, x, size): - - H, W = size - B, L, C = x.shape - assert L == H * W, "input feature has wrong size" - - x = x.view(B, H, W, C) - - pad_l = pad_t = 0 - pad_r = (self.window_size - W % self.window_size) % self.window_size - pad_b = (self.window_size - H % self.window_size) % self.window_size - x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) - _, Hp, Wp, _ = x.shape - - x = window_partition(x, self.window_size) - x = x.view(-1, self.window_size * self.window_size, C) - - # W-MSA/SW-MSA - # attn_windows = self.attn(x_windows) - - B_, N, C = x.shape - qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) - q, k, v = qkv[0], qkv[1], qkv[2] - - q = q * self.scale - attn = (q @ k.transpose(-2, -1)) - attn = self.softmax(attn) - - x = (attn @ v).transpose(1, 2).reshape(B_, N, C) - x = self.proj(x) - - # merge windows - x = x.view( - -1, self.window_size, self.window_size, C - ) - x = window_reverse(x, B, self.window_size, Hp, Wp) - - if pad_r > 0 or pad_b > 0: - x = x[:, :H, :W, :].contiguous() - - x = x.view(B, H * W, C) - - return x, size - - -class SpatialBlock(nn.Module): - - def __init__(self, dim, num_heads, window_size, - mlp_ratio=4., qkv_bias=True, drop_path_rate=0., act_layer=nn.GELU, - norm_layer=nn.LayerNorm, conv_at_attn=True, conv_at_ffn=True): - super().__init__() - - drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() - - self.conv1 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None - self.window_attn = PreNorm( - norm_layer(dim), - WindowAttention(dim, num_heads, window_size, qkv_bias=qkv_bias), - drop_path - ) - self.conv2 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None - self.ffn = PreNorm( - norm_layer(dim), - Mlp(in_features=dim, hidden_features=int(dim*mlp_ratio), act_layer=act_layer), - drop_path - ) - - def forward(self, x, size): - if self.conv1: - x, size = self.conv1(x, size) - x, size = self.window_attn(x, size) - - if self.conv2: - x, size = self.conv2(x, size) - x, size = self.ffn(x, size) - return x, size - - -class DaViT(nn.Module): - """ DaViT: Dual-Attention Transformer - - Args: - in_chans (int): Number of input image channels. Default: 3. - num_classes (int): Number of classes for classification head. Default: 1000. - patch_size (tuple(int)): Patch size of convolution in different stages. Default: (7, 2, 2, 2). - patch_stride (tuple(int)): Patch stride of convolution in different stages. Default: (4, 2, 2, 2). - patch_padding (tuple(int)): Patch padding of convolution in different stages. Default: (3, 0, 0, 0). - patch_prenorm (tuple(bool)): If True, perform norm before convlution layer. Default: (True, False, False, False). - embed_dims (tuple(int)): Patch embedding dimension in different stages. Default: (64, 128, 192, 256). - num_heads (tuple(int)): Number of spatial attention heads in different stages. Default: (4, 8, 12, 16). - num_groups (tuple(int)): Number of channel groups in different stages. Default: (4, 8, 12, 16). - window_size (int): Window size. Default: 7. - mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. - qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True. - drop_path_rate (float): Stochastic depth rate. Default: 0.1. - norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. - enable_checkpoint (bool): If True, enable checkpointing. Default: False. - conv_at_attn (bool): If True, performe depthwise convolution before attention layer. Default: True. - conv_at_ffn (bool): If True, performe depthwise convolution before ffn layer. Default: True. - """ - - def __init__( - self, - in_chans=3, - num_classes=1000, - depths=(1, 1, 3, 1), - patch_size=(7, 2, 2, 2), - patch_stride=(4, 2, 2, 2), - patch_padding=(3, 0, 0, 0), - patch_prenorm=(False, False, False, False), - embed_dims=(64, 128, 192, 256), - num_heads=(3, 6, 12, 24), - num_groups=(3, 6, 12, 24), - window_size=7, - mlp_ratio=4., - qkv_bias=True, - drop_path_rate=0.1, - norm_layer=nn.LayerNorm, - enable_checkpoint=False, - conv_at_attn=True, - conv_at_ffn=True, - ): - super().__init__() - - self.num_classes = num_classes - self.embed_dims = embed_dims - self.num_heads = num_heads - self.num_groups = num_groups - self.num_stages = len(self.embed_dims) - self.enable_checkpoint = enable_checkpoint - assert self.num_stages == len(self.num_heads) == len(self.num_groups) - - num_stages = len(embed_dims) - dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)*2)] - - depth_offset = 0 - convs = [] - blocks = [] - for i in range(num_stages): - conv_embed = ConvEmbed( - patch_size=patch_size[i], - stride=patch_stride[i], - padding=patch_padding[i], - in_chans=in_chans if i == 0 else self.embed_dims[i - 1], - embed_dim=self.embed_dims[i], - norm_layer=norm_layer, - pre_norm=patch_prenorm[i] - ) - convs.append(conv_embed) - - block = MySequential( - *[ - MySequential(OrderedDict([ - ( - 'spatial_block', SpatialBlock( - embed_dims[i], - num_heads[i], - window_size, - drop_path_rate=dpr[depth_offset+j*2], - qkv_bias=qkv_bias, - mlp_ratio=mlp_ratio, - conv_at_attn=conv_at_attn, - conv_at_ffn=conv_at_ffn, - ) - ), - ( - 'channel_block', ChannelBlock( - embed_dims[i], - num_groups[i], - drop_path_rate=dpr[depth_offset+j*2+1], - qkv_bias=qkv_bias, - mlp_ratio=mlp_ratio, - conv_at_attn=conv_at_attn, - conv_at_ffn=conv_at_ffn, - ) - ) - ])) for j in range(depths[i]) - ] - ) - blocks.append(block) - depth_offset += depths[i]*2 - - self.convs = nn.ModuleList(convs) - self.blocks = nn.ModuleList(blocks) - - self.norms = norm_layer(self.embed_dims[-1]) - self.avgpool = nn.AdaptiveAvgPool1d(1) - self.head = nn.Linear(self.embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity() - - self.apply(self._init_weights) - - @property - def dim_out(self): - return self.embed_dims[-1] - - def _init_weights(self, m): - if isinstance(m, nn.Linear): - trunc_normal_(m.weight, std=0.02) - if m.bias is not None: - nn.init.constant_(m.bias, 0) - elif isinstance(m, nn.Conv2d): - nn.init.normal_(m.weight, std=0.02) - for name, _ in m.named_parameters(): - if name in ['bias']: - nn.init.constant_(m.bias, 0) - elif isinstance(m, nn.LayerNorm): - nn.init.constant_(m.weight, 1.0) - nn.init.constant_(m.bias, 0) - elif isinstance(m, nn.BatchNorm2d): - nn.init.constant_(m.weight, 1.0) - nn.init.constant_(m.bias, 0) - - def forward_features_unpool(self, x): - """ - forward until avg pooling - Args: - x (_type_): input image tensor - """ - input_size = (x.size(2), x.size(3)) - for conv, block in zip(self.convs, self.blocks): - x, input_size = conv(x, input_size) - if self.enable_checkpoint: - x, input_size = checkpoint.checkpoint(block, x, input_size) - else: - x, input_size = block(x, input_size) - return x - - def forward_features(self, x): - x = self.forward_features_unpool(x) - - # (batch_size, num_tokens, token_dim) - x = self.avgpool(x.transpose(1, 2)) - # (batch_size, 1, num_tokens) - x = torch.flatten(x, 1) - x = self.norms(x) - - return x - - def forward(self, x): - x = self.forward_features(x) - x = self.head(x) - return x - - @classmethod - def from_config(cls, config): - return cls( - depths=config.depths, - embed_dims=config.dim_embed, - num_heads=config.num_heads, - num_groups=config.num_groups, - patch_size=config.patch_size, - patch_stride=config.patch_stride, - patch_padding=config.patch_padding, - patch_prenorm=config.patch_prenorm, - drop_path_rate=config.drop_path_rate, - window_size=config.window_size, - ) - - - - -if is_flash_attn_2_available(): - from flash_attn import flash_attn_func, flash_attn_varlen_func - from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa - -# Copied from transformers.models.llama.modeling_llama._get_unpad_data -def _get_unpad_data(attention_mask): - seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) - indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() - max_seqlen_in_batch = seqlens_in_batch.max().item() - cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) - return ( - indices, - cu_seqlens, - max_seqlen_in_batch, - ) - - -def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): - """ - Shift input ids one token to the right. - """ - shifted_input_ids = input_ids.new_zeros(input_ids.shape) - shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() - shifted_input_ids[:, 0] = decoder_start_token_id - - if pad_token_id is None: - raise ValueError("self.model.config.pad_token_id has to be defined.") - # replace possible -100 values in labels by `pad_token_id` - shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) - - return shifted_input_ids - - -class Florence2LearnedPositionalEmbedding(nn.Embedding): - """ - This module learns positional embeddings up to a fixed maximum size. - """ - - def __init__(self, num_embeddings: int, embedding_dim: int): - # Florence2 is set up so that if padding_idx is specified then offset the embedding ids by 2 - # and adjust num_embeddings appropriately. Other models don't have this hack - self.offset = 2 - super().__init__(num_embeddings + self.offset, embedding_dim) - - def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0): - """`input_ids' shape is expected to be [bsz x seqlen].""" - - bsz, seq_len = input_ids.shape[:2] - positions = torch.arange( - past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device - ).expand(bsz, -1) - - return super().forward(positions + self.offset) - - -class Florence2ScaledWordEmbedding(nn.Embedding): - """ - This module overrides nn.Embeddings' forward by multiplying with embeddings scale. - """ - - def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: Optional[float] = 1.0): - super().__init__(num_embeddings, embedding_dim, padding_idx) - self.embed_scale = embed_scale - - def forward(self, input_ids: torch.Tensor): - return super().forward(input_ids) * self.embed_scale - - -class Florence2Attention(nn.Module): - """Multi-headed attention from 'Attention Is All You Need' paper""" - - def __init__( - self, - embed_dim: int, - num_heads: int, - dropout: float = 0.0, - is_decoder: bool = False, - bias: bool = True, - is_causal: bool = False, - config: Optional[Florence2LanguageConfig] = None, - ): - super().__init__() - self.embed_dim = embed_dim - self.num_heads = num_heads - self.dropout = dropout - self.head_dim = embed_dim // num_heads - self.config = config - - if (self.head_dim * num_heads) != self.embed_dim: - raise ValueError( - f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" - f" and `num_heads`: {num_heads})." - ) - self.scaling = self.head_dim**-0.5 - self.is_decoder = is_decoder - self.is_causal = is_causal - - self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) - self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) - self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) - self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) - - def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): - return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() - - def forward( - self, - hidden_states: torch.Tensor, - key_value_states: Optional[torch.Tensor] = None, - past_key_value: Optional[Tuple[torch.Tensor]] = None, - attention_mask: Optional[torch.Tensor] = None, - layer_head_mask: Optional[torch.Tensor] = None, - output_attentions: bool = False, - ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: - """Input shape: Batch x Time x Channel""" - - # if key_value_states are provided this layer is used as a cross-attention layer - # for the decoder - is_cross_attention = key_value_states is not None - - bsz, tgt_len, _ = hidden_states.size() - - # get query proj - query_states = self.q_proj(hidden_states) * self.scaling - # get key, value proj - # `past_key_value[0].shape[2] == key_value_states.shape[1]` - # is checking that the `sequence_length` of the `past_key_value` is the same as - # the provided `key_value_states` to support prefix tuning - if ( - is_cross_attention - and past_key_value is not None - and past_key_value[0].shape[2] == key_value_states.shape[1] - ): - # reuse k,v, cross_attentions - key_states = past_key_value[0] - value_states = past_key_value[1] - elif is_cross_attention: - # cross_attentions - key_states = self._shape(self.k_proj(key_value_states), -1, bsz) - value_states = self._shape(self.v_proj(key_value_states), -1, bsz) - elif past_key_value is not None: - # reuse k, v, self_attention - key_states = self._shape(self.k_proj(hidden_states), -1, bsz) - value_states = self._shape(self.v_proj(hidden_states), -1, bsz) - key_states = torch.cat([past_key_value[0], key_states], dim=2) - value_states = torch.cat([past_key_value[1], value_states], dim=2) - else: - # self_attention - key_states = self._shape(self.k_proj(hidden_states), -1, bsz) - value_states = self._shape(self.v_proj(hidden_states), -1, bsz) - - if self.is_decoder: - # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. - # Further calls to cross_attention layer can then reuse all cross-attention - # key/value_states (first "if" case) - # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of - # all previous decoder key/value_states. Further calls to uni-directional self-attention - # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) - # if encoder bi-directional self-attention `past_key_value` is always `None` - past_key_value = (key_states, value_states) - - proj_shape = (bsz * self.num_heads, -1, self.head_dim) - query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) - key_states = key_states.reshape(*proj_shape) - value_states = value_states.reshape(*proj_shape) - - src_len = key_states.size(1) - attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) - - if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): - raise ValueError( - f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" - f" {attn_weights.size()}" - ) - - if attention_mask is not None: - if attention_mask.size() != (bsz, 1, tgt_len, src_len): - raise ValueError( - f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" - ) - attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask - attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) - - attn_weights = nn.functional.softmax(attn_weights, dim=-1) - - if layer_head_mask is not None: - if layer_head_mask.size() != (self.num_heads,): - raise ValueError( - f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" - f" {layer_head_mask.size()}" - ) - attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) - attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) - - if output_attentions: - # this operation is a bit awkward, but it's required to - # make sure that attn_weights keeps its gradient. - # In order to do so, attn_weights have to be reshaped - # twice and have to be reused in the following - attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) - attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) - else: - attn_weights_reshaped = None - - attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) - - attn_output = torch.bmm(attn_probs, value_states) - - if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): - raise ValueError( - f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" - f" {attn_output.size()}" - ) - - attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) - attn_output = attn_output.transpose(1, 2) - - # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be - # partitioned across GPUs when using tensor-parallelism. - attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) - - attn_output = self.out_proj(attn_output) - - return attn_output, attn_weights_reshaped, past_key_value - - -class Florence2FlashAttention2(Florence2Attention): - """ - Florence2 flash attention module. This module inherits from `Florence2Attention` as the weights of the module stays - untouched. The only required change would be on the forward pass where it needs to correctly call the public API of - flash attention and deal with padding tokens in case the input contains any of them. - """ - - # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - - # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. - # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. - # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). - self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() - - def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int): - return tensor.view(bsz, seq_len, self.num_heads, self.head_dim) - - def forward( - self, - hidden_states: torch.Tensor, - key_value_states: Optional[torch.Tensor] = None, - past_key_value: Optional[Tuple[torch.Tensor]] = None, - attention_mask: Optional[torch.Tensor] = None, - layer_head_mask: Optional[torch.Tensor] = None, - output_attentions: bool = False, - ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: - # Florence2FlashAttention2 attention does not support output_attentions - if output_attentions: - raise ValueError("Florence2FlashAttention2 attention does not support output_attentions") - - # if key_value_states are provided this layer is used as a cross-attention layer - # for the decoder - is_cross_attention = key_value_states is not None - - bsz, q_len, _ = hidden_states.size() - - # get query proj - query_states = self._reshape(self.q_proj(hidden_states), -1, bsz) - # get key, value proj - # `past_key_value[0].shape[2] == key_value_states.shape[1]` - # is checking that the `sequence_length` of the `past_key_value` is the same as - # the provided `key_value_states` to support prefix tuning - if ( - is_cross_attention - and past_key_value is not None - and past_key_value[0].shape[2] == key_value_states.shape[1] - ): - # reuse k,v, cross_attentions - key_states = past_key_value[0].transpose(1, 2) - value_states = past_key_value[1].transpose(1, 2) - elif is_cross_attention: - # cross_attentions - key_states = self._reshape(self.k_proj(key_value_states), -1, bsz) - value_states = self._reshape(self.v_proj(key_value_states), -1, bsz) - elif past_key_value is not None: - # reuse k, v, self_attention - key_states = self._reshape(self.k_proj(hidden_states), -1, bsz) - value_states = self._reshape(self.v_proj(hidden_states), -1, bsz) - key_states = torch.cat([past_key_value[0].transpose(1, 2), key_states], dim=1) - value_states = torch.cat([past_key_value[1].transpose(1, 2), value_states], dim=1) - else: - # self_attention - key_states = self._reshape(self.k_proj(hidden_states), -1, bsz) - value_states = self._reshape(self.v_proj(hidden_states), -1, bsz) - - if self.is_decoder: - # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. - # Further calls to cross_attention layer can then reuse all cross-attention - # key/value_states (first "if" case) - # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of - # all previous decoder key/value_states. Further calls to uni-directional self-attention - # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) - # if encoder bi-directional self-attention `past_key_value` is always `None` - past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2)) - - kv_seq_len = key_states.shape[-2] - if past_key_value is not None: - kv_seq_len += past_key_value[0].shape[-2] - - # In PEFT, usually we cast the layer norms in float32 for training stability reasons - # therefore the input hidden states gets silently casted in float32. Hence, we need - # cast them back in the correct dtype just to be sure everything works as expected. - # This might slowdown training & inference so it is recommended to not cast the LayerNorms - # in fp32. (LlamaRMSNorm handles it correctly) - - input_dtype = query_states.dtype - if input_dtype == torch.float32: - if torch.is_autocast_enabled(): - target_dtype = torch.get_autocast_gpu_dtype() - # Handle the case where the model is quantized - elif hasattr(self.config, "_pre_quantization_dtype"): - target_dtype = self.config._pre_quantization_dtype - else: - target_dtype = self.q_proj.weight.dtype - - logger.warning_once( - f"The input hidden states seems to be silently casted in float32, this might be related to" - f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" - f" {target_dtype}." - ) - - query_states = query_states.to(target_dtype) - key_states = key_states.to(target_dtype) - value_states = value_states.to(target_dtype) - - attn_output = self._flash_attention_forward( - query_states, key_states, value_states, attention_mask, q_len, dropout=self.dropout - ) - - attn_output = attn_output.reshape(bsz, q_len, -1) - attn_output = self.out_proj(attn_output) - - if not output_attentions: - attn_weights = None - - return attn_output, attn_weights, past_key_value - - # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward - def _flash_attention_forward( - self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None - ): - """ - Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token - first unpad the input, then computes the attention scores and pad the final attention scores. - - Args: - query_states (`torch.Tensor`): - Input query states to be passed to Flash Attention API - key_states (`torch.Tensor`): - Input key states to be passed to Flash Attention API - value_states (`torch.Tensor`): - Input value states to be passed to Flash Attention API - attention_mask (`torch.Tensor`): - The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the - position of padding tokens and 1 for the position of non-padding tokens. - dropout (`float`): - Attention dropout - softmax_scale (`float`, *optional*): - The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) - """ - if not self._flash_attn_uses_top_left_mask: - causal = self.is_causal - else: - # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. - causal = self.is_causal and query_length != 1 - - # Contains at least one padding token in the sequence - if attention_mask is not None: - batch_size = query_states.shape[0] - query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( - query_states, key_states, value_states, attention_mask, query_length - ) - - cu_seqlens_q, cu_seqlens_k = cu_seq_lens - max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens - - attn_output_unpad = flash_attn_varlen_func( - query_states, - key_states, - value_states, - cu_seqlens_q=cu_seqlens_q, - cu_seqlens_k=cu_seqlens_k, - max_seqlen_q=max_seqlen_in_batch_q, - max_seqlen_k=max_seqlen_in_batch_k, - dropout_p=dropout, - softmax_scale=softmax_scale, - causal=causal, - ) - - attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) - else: - attn_output = flash_attn_func( - query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal - ) - - return attn_output - - # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input - def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): - indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) - batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape - - key_layer = index_first_axis( - key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k - ) - value_layer = index_first_axis( - value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k - ) - if query_length == kv_seq_len: - query_layer = index_first_axis( - query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k - ) - cu_seqlens_q = cu_seqlens_k - max_seqlen_in_batch_q = max_seqlen_in_batch_k - indices_q = indices_k - elif query_length == 1: - max_seqlen_in_batch_q = 1 - cu_seqlens_q = torch.arange( - batch_size + 1, dtype=torch.int32, device=query_layer.device - ) # There is a memcpy here, that is very bad. - indices_q = cu_seqlens_q[:-1] - query_layer = query_layer.squeeze(1) - else: - # The -q_len: slice assumes left padding. - attention_mask = attention_mask[:, -query_length:] - query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) - - return ( - query_layer, - key_layer, - value_layer, - indices_q, - (cu_seqlens_q, cu_seqlens_k), - (max_seqlen_in_batch_q, max_seqlen_in_batch_k), - ) - - -class Florence2SdpaAttention(Florence2Attention): - def forward( - self, - hidden_states: torch.Tensor, - key_value_states: Optional[torch.Tensor] = None, - past_key_value: Optional[Tuple[torch.Tensor]] = None, - attention_mask: Optional[torch.Tensor] = None, - layer_head_mask: Optional[torch.Tensor] = None, - output_attentions: bool = False, - ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: - """Input shape: Batch x Time x Channel""" - if output_attentions or layer_head_mask is not None: - # TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented. - logger.warning_once( - "Florence2Model is using Florence2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention" - ' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' - ) - return super().forward( - hidden_states, - key_value_states=key_value_states, - past_key_value=past_key_value, - attention_mask=attention_mask, - layer_head_mask=layer_head_mask, - output_attentions=output_attentions, - ) - - # if key_value_states are provided this layer is used as a cross-attention layer - # for the decoder - is_cross_attention = key_value_states is not None - - bsz, tgt_len, _ = hidden_states.size() - - # get query proj - query_states = self.q_proj(hidden_states) - # get key, value proj - # `past_key_value[0].shape[2] == key_value_states.shape[1]` - # is checking that the `sequence_length` of the `past_key_value` is the same as - # the provided `key_value_states` to support prefix tuning - if ( - is_cross_attention - and past_key_value is not None - and past_key_value[0].shape[2] == key_value_states.shape[1] - ): - # reuse k,v, cross_attentions - key_states = past_key_value[0] - value_states = past_key_value[1] - elif is_cross_attention: - # cross_attentions - key_states = self._shape(self.k_proj(key_value_states), -1, bsz) - value_states = self._shape(self.v_proj(key_value_states), -1, bsz) - elif past_key_value is not None: - # reuse k, v, self_attention - key_states = self._shape(self.k_proj(hidden_states), -1, bsz) - value_states = self._shape(self.v_proj(hidden_states), -1, bsz) - key_states = torch.cat([past_key_value[0], key_states], dim=2) - value_states = torch.cat([past_key_value[1], value_states], dim=2) - else: - # self_attention - key_states = self._shape(self.k_proj(hidden_states), -1, bsz) - value_states = self._shape(self.v_proj(hidden_states), -1, bsz) - - if self.is_decoder: - # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. - # Further calls to cross_attention layer can then reuse all cross-attention - # key/value_states (first "if" case) - # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of - # all previous decoder key/value_states. Further calls to uni-directional self-attention - # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) - # if encoder bi-directional self-attention `past_key_value` is always `None` - past_key_value = (key_states, value_states) - - query_states = self._shape(query_states, tgt_len, bsz) - - # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment - # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. - # The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1. - is_causal = True if self.is_causal and attention_mask is None and tgt_len > 1 else False - - # NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask, - # but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577 - attn_output = torch.nn.functional.scaled_dot_product_attention( - query_states, - key_states, - value_states, - attn_mask=attention_mask, - dropout_p=self.dropout if self.training else 0.0, - is_causal=is_causal, - ) - - if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim): - raise ValueError( - f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" - f" {attn_output.size()}" - ) - - attn_output = attn_output.transpose(1, 2) - - # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be - # partitioned across GPUs when using tensor-parallelism. - attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) - - attn_output = self.out_proj(attn_output) - - return attn_output, None, past_key_value - - -FLORENCE2_ATTENTION_CLASSES = { - "eager": Florence2Attention, - "sdpa": Florence2SdpaAttention, - "flash_attention_2": Florence2FlashAttention2, -} - - -class Florence2EncoderLayer(nn.Module): - def __init__(self, config: Florence2LanguageConfig): - super().__init__() - self.embed_dim = config.d_model - - self.self_attn = FLORENCE2_ATTENTION_CLASSES[config._attn_implementation]( - embed_dim=self.embed_dim, - num_heads=config.encoder_attention_heads, - dropout=config.attention_dropout, - config=config, - ) - self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) - self.dropout = config.dropout - self.activation_fn = ACT2FN[config.activation_function] - self.activation_dropout = config.activation_dropout - self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) - self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) - self.final_layer_norm = nn.LayerNorm(self.embed_dim) - - def forward( - self, - hidden_states: torch.FloatTensor, - attention_mask: torch.FloatTensor, - layer_head_mask: torch.FloatTensor, - output_attentions: Optional[bool] = False, - ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]: - """ - Args: - hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` - attention_mask (`torch.FloatTensor`): attention mask of size - `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. - layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size - `(encoder_attention_heads,)`. - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under - returned tensors for more detail. - """ - residual = hidden_states - hidden_states, attn_weights, _ = self.self_attn( - hidden_states=hidden_states, - attention_mask=attention_mask, - layer_head_mask=layer_head_mask, - output_attentions=output_attentions, - ) - hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) - hidden_states = residual + hidden_states - hidden_states = self.self_attn_layer_norm(hidden_states) - - residual = hidden_states - hidden_states = self.activation_fn(self.fc1(hidden_states)) - hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) - hidden_states = self.fc2(hidden_states) - hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) - hidden_states = residual + hidden_states - hidden_states = self.final_layer_norm(hidden_states) - - if hidden_states.dtype == torch.float16 and ( - torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() - ): - clamp_value = torch.finfo(hidden_states.dtype).max - 1000 - hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) - - outputs = (hidden_states,) - - if output_attentions: - outputs += (attn_weights,) - - return outputs - - -class Florence2DecoderLayer(nn.Module): - def __init__(self, config: Florence2LanguageConfig): - super().__init__() - self.embed_dim = config.d_model - - self.self_attn = FLORENCE2_ATTENTION_CLASSES[config._attn_implementation]( - embed_dim=self.embed_dim, - num_heads=config.decoder_attention_heads, - dropout=config.attention_dropout, - is_decoder=True, - is_causal=True, - config=config, - ) - self.dropout = config.dropout - self.activation_fn = ACT2FN[config.activation_function] - self.activation_dropout = config.activation_dropout - - self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) - self.encoder_attn = FLORENCE2_ATTENTION_CLASSES[config._attn_implementation]( - self.embed_dim, - config.decoder_attention_heads, - dropout=config.attention_dropout, - is_decoder=True, - config=config, - ) - self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) - self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) - self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) - self.final_layer_norm = nn.LayerNorm(self.embed_dim) - - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.Tensor] = None, - encoder_hidden_states: Optional[torch.Tensor] = None, - encoder_attention_mask: Optional[torch.Tensor] = None, - layer_head_mask: Optional[torch.Tensor] = None, - cross_attn_layer_head_mask: Optional[torch.Tensor] = None, - past_key_value: Optional[Tuple[torch.Tensor]] = None, - output_attentions: Optional[bool] = False, - use_cache: Optional[bool] = True, - ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: - """ - Args: - hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` - attention_mask (`torch.FloatTensor`): attention mask of size - `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. - encoder_hidden_states (`torch.FloatTensor`): - cross attention input to the layer of shape `(batch, seq_len, embed_dim)` - encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size - `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. - layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size - `(encoder_attention_heads,)`. - cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of - size `(decoder_attention_heads,)`. - past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under - returned tensors for more detail. - """ - residual = hidden_states - - # Self Attention - # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 - self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None - # add present self-attn cache to positions 1,2 of present_key_value tuple - hidden_states, self_attn_weights, present_key_value = self.self_attn( - hidden_states=hidden_states, - past_key_value=self_attn_past_key_value, - attention_mask=attention_mask, - layer_head_mask=layer_head_mask, - output_attentions=output_attentions, - ) - hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) - hidden_states = residual + hidden_states - hidden_states = self.self_attn_layer_norm(hidden_states) - - # Cross-Attention Block - cross_attn_present_key_value = None - cross_attn_weights = None - if encoder_hidden_states is not None: - residual = hidden_states - - # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple - cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None - hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( - hidden_states=hidden_states, - key_value_states=encoder_hidden_states, - attention_mask=encoder_attention_mask, - layer_head_mask=cross_attn_layer_head_mask, - past_key_value=cross_attn_past_key_value, - output_attentions=output_attentions, - ) - hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) - hidden_states = residual + hidden_states - hidden_states = self.encoder_attn_layer_norm(hidden_states) - - # add cross-attn to positions 3,4 of present_key_value tuple - present_key_value = present_key_value + cross_attn_present_key_value - - # Fully Connected - residual = hidden_states - hidden_states = self.activation_fn(self.fc1(hidden_states)) - hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) - hidden_states = self.fc2(hidden_states) - hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) - hidden_states = residual + hidden_states - hidden_states = self.final_layer_norm(hidden_states) - - outputs = (hidden_states,) - - if output_attentions: - outputs += (self_attn_weights, cross_attn_weights) - - if use_cache: - outputs += (present_key_value,) - - return outputs - - - -class Florence2LanguagePreTrainedModel(PreTrainedModel): - config_class = Florence2LanguageConfig - base_model_prefix = "model" - supports_gradient_checkpointing = True - _keys_to_ignore_on_load_unexpected = ["encoder.version", "decoder.version"] - _no_split_modules = [r"Florence2EncoderLayer", r"Florence2DecoderLayer"] - _skip_keys_device_placement = "past_key_values" - _supports_flash_attn_2 = True - _supports_sdpa = True - - def _init_weights(self, module): - std = self.config.init_std - if isinstance(module, nn.Linear): - module.weight.data.normal_(mean=0.0, std=std) - if module.bias is not None: - module.bias.data.zero_() - elif isinstance(module, nn.Embedding): - module.weight.data.normal_(mean=0.0, std=std) - if module.padding_idx is not None: - module.weight.data[module.padding_idx].zero_() - - @property - def dummy_inputs(self): - pad_token = self.config.pad_token_id - input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device) - dummy_inputs = { - "attention_mask": input_ids.ne(pad_token), - "input_ids": input_ids, - } - return dummy_inputs - - -class Florence2Encoder(Florence2LanguagePreTrainedModel): - """ - Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a - [`Florence2EncoderLayer`]. - - Args: - config: Florence2LanguageConfig - embed_tokens (nn.Embedding): output embedding - """ - - def __init__(self, config: Florence2LanguageConfig, embed_tokens: Optional[nn.Embedding] = None): - super().__init__(config) - - self.dropout = config.dropout - self.layerdrop = config.encoder_layerdrop - - embed_dim = config.d_model - self.padding_idx = config.pad_token_id - self.max_source_positions = config.max_position_embeddings - embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 - - self.embed_tokens = Florence2ScaledWordEmbedding( - config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale - ) - - if embed_tokens is not None: - self.embed_tokens.weight = embed_tokens.weight - - self.embed_positions = Florence2LearnedPositionalEmbedding( - config.max_position_embeddings, - embed_dim, - ) - self.layers = nn.ModuleList([Florence2EncoderLayer(config) for _ in range(config.encoder_layers)]) - self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" - self._use_sdpa = config._attn_implementation == "sdpa" - self.layernorm_embedding = nn.LayerNorm(embed_dim) - - self.gradient_checkpointing = False - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.embed_tokens - - def set_input_embeddings(self, value): - self.embed_tokens = value - - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - head_mask: Optional[torch.Tensor] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, BaseModelOutput]: - r""" - Args: - input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): - Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you - provide it. - - Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and - [`PreTrainedTokenizer.__call__`] for details. - - [What are input IDs?](../glossary#input-ids) - attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): - Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - - - 1 for tokens that are **not masked**, - - 0 for tokens that are **masked**. - - [What are attention masks?](../glossary#attention-mask) - head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): - Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - - - 1 indicates the head is **not masked**, - - 0 indicates the head is **masked**. - - inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): - Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. - This is useful if you want more control over how to convert `input_ids` indices into associated vectors - than the model's internal embedding lookup matrix. - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under - returned tensors for more detail. - output_hidden_states (`bool`, *optional*): - Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors - for more detail. - return_dict (`bool`, *optional*): - Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. - """ - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - # retrieve input_ids and inputs_embeds - if input_ids is not None and inputs_embeds is not None: - raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") - elif input_ids is not None: - input = input_ids - input_ids = input_ids.view(-1, input_ids.shape[-1]) - elif inputs_embeds is not None: - input = inputs_embeds[:, :, -1] - else: - raise ValueError("You have to specify either input_ids or inputs_embeds") - - if inputs_embeds is None: - inputs_embeds = self.embed_tokens(input_ids) - - embed_pos = self.embed_positions(input) - embed_pos = embed_pos.to(inputs_embeds.device) - - hidden_states = inputs_embeds + embed_pos - hidden_states = self.layernorm_embedding(hidden_states) - hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) - - # expand attention_mask - if attention_mask is not None: - if self._use_flash_attention_2: - attention_mask = attention_mask if 0 in attention_mask else None - elif self._use_sdpa and head_mask is None and not output_attentions: - # output_attentions=True & head_mask can not be supported when using SDPA, fall back to - # the manual implementation that requires a 4D causal mask in all cases. - # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] - attention_mask = _prepare_4d_attention_mask_for_sdpa(attention_mask, inputs_embeds.dtype) - else: - # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] - attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) - - encoder_states = () if output_hidden_states else None - all_attentions = () if output_attentions else None - - # check if head_mask has a correct number of layers specified if desired - if head_mask is not None: - if head_mask.size()[0] != (len(self.layers)): - raise ValueError( - f"The head_mask should be specified for {len(self.layers)} layers, but it is for" - f" {head_mask.size()[0]}." - ) - - for idx, encoder_layer in enumerate(self.layers): - if output_hidden_states: - encoder_states = encoder_states + (hidden_states,) - # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) - to_drop = False - if self.training: - dropout_probability = torch.rand([]) - if dropout_probability < self.layerdrop: # skip the layer - to_drop = True - - if to_drop: - layer_outputs = (None, None) - else: - if self.gradient_checkpointing and self.training: - layer_outputs = self._gradient_checkpointing_func( - encoder_layer.__call__, - hidden_states, - attention_mask, - (head_mask[idx] if head_mask is not None else None), - output_attentions, - ) - else: - layer_outputs = encoder_layer( - hidden_states, - attention_mask, - layer_head_mask=(head_mask[idx] if head_mask is not None else None), - output_attentions=output_attentions, - ) - - hidden_states = layer_outputs[0] - - if output_attentions: - all_attentions = all_attentions + (layer_outputs[1],) - - if output_hidden_states: - encoder_states = encoder_states + (hidden_states,) - - if not return_dict: - return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) - return BaseModelOutput( - last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions - ) - - -class Florence2Decoder(Florence2LanguagePreTrainedModel): - """ - Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`Florence2DecoderLayer`] - - Args: - config: Florence2LanguageConfig - embed_tokens (nn.Embedding): output embedding - """ - - def __init__(self, config: Florence2LanguageConfig, embed_tokens: Optional[nn.Embedding] = None): - super().__init__(config) - self.dropout = config.dropout - self.layerdrop = config.decoder_layerdrop - self.padding_idx = config.pad_token_id - self.max_target_positions = config.max_position_embeddings - embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 - - self.embed_tokens = Florence2ScaledWordEmbedding( - config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale - ) - - if embed_tokens is not None: - self.embed_tokens.weight = embed_tokens.weight - - self.embed_positions = Florence2LearnedPositionalEmbedding( - config.max_position_embeddings, - config.d_model, - ) - self.layers = nn.ModuleList([Florence2DecoderLayer(config) for _ in range(config.decoder_layers)]) - self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" - self._use_sdpa = config._attn_implementation == "sdpa" - - self.layernorm_embedding = nn.LayerNorm(config.d_model) - - self.gradient_checkpointing = False - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.embed_tokens - - def set_input_embeddings(self, value): - self.embed_tokens = value - - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - encoder_hidden_states: Optional[torch.FloatTensor] = None, - encoder_attention_mask: Optional[torch.LongTensor] = None, - head_mask: Optional[torch.Tensor] = None, - cross_attn_head_mask: Optional[torch.Tensor] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: - r""" - Args: - input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): - Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you - provide it. - - Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and - [`PreTrainedTokenizer.__call__`] for details. - - [What are input IDs?](../glossary#input-ids) - attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): - Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - - - 1 for tokens that are **not masked**, - - 0 for tokens that are **masked**. - - [What are attention masks?](../glossary#attention-mask) - encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): - Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention - of the decoder. - encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): - Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values - selected in `[0, 1]`: - - - 1 for tokens that are **not masked**, - - 0 for tokens that are **masked**. - - [What are attention masks?](../glossary#attention-mask) - head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): - Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - - - 1 indicates the head is **not masked**, - - 0 indicates the head is **masked**. - - cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): - Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing - cross-attention on hidden heads. Mask values selected in `[0, 1]`: - - - 1 indicates the head is **not masked**, - - 0 indicates the head is **masked**. - - past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of - shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of - shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. - - Contains pre-computed hidden-states (key and values in the self-attention blocks and in the - cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. - - If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those - that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of - all `decoder_input_ids` of shape `(batch_size, sequence_length)`. - inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): - Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. - This is useful if you want more control over how to convert `input_ids` indices into associated vectors - than the model's internal embedding lookup matrix. - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under - returned tensors for more detail. - output_hidden_states (`bool`, *optional*): - Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors - for more detail. - return_dict (`bool`, *optional*): - Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. - """ - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - use_cache = use_cache if use_cache is not None else self.config.use_cache - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - # retrieve input_ids and inputs_embeds - if input_ids is not None and inputs_embeds is not None: - raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") - elif input_ids is not None: - input = input_ids - input_shape = input.shape - input_ids = input_ids.view(-1, input_shape[-1]) - elif inputs_embeds is not None: - input_shape = inputs_embeds.size()[:-1] - input = inputs_embeds[:, :, -1] - else: - raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") - - # past_key_values_length - past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 - - if inputs_embeds is None: - inputs_embeds = self.embed_tokens(input) - - if self._use_flash_attention_2: - # 2d mask is passed through the layers - attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None - elif self._use_sdpa and not output_attentions and cross_attn_head_mask is None: - # output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on - # the manual implementation that requires a 4D causal mask in all cases. - attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( - attention_mask, - input_shape, - inputs_embeds, - past_key_values_length, - ) - else: - # 4d mask is passed through the layers - attention_mask = _prepare_4d_causal_attention_mask( - attention_mask, input_shape, inputs_embeds, past_key_values_length - ) - - # expand encoder attention mask - if encoder_hidden_states is not None and encoder_attention_mask is not None: - if self._use_flash_attention_2: - encoder_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None - elif self._use_sdpa and cross_attn_head_mask is None and not output_attentions: - # output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on - # the manual implementation that requires a 4D causal mask in all cases. - # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] - encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa( - encoder_attention_mask, - inputs_embeds.dtype, - tgt_len=input_shape[-1], - ) - else: - # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] - encoder_attention_mask = _prepare_4d_attention_mask( - encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] - ) - - # embed positions - positions = self.embed_positions(input, past_key_values_length) - positions = positions.to(inputs_embeds.device) - - hidden_states = inputs_embeds + positions - hidden_states = self.layernorm_embedding(hidden_states) - - hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) - - if self.gradient_checkpointing and self.training: - if use_cache: - logger.warning_once( - "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." - ) - use_cache = False - - # decoder layers - all_hidden_states = () if output_hidden_states else None - all_self_attns = () if output_attentions else None - all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None - next_decoder_cache = () if use_cache else None - - # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired - for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): - if attn_mask is not None: - if attn_mask.size()[0] != (len(self.layers)): - raise ValueError( - f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" - f" {head_mask.size()[0]}." - ) - - for idx, decoder_layer in enumerate(self.layers): - # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) - if output_hidden_states: - all_hidden_states += (hidden_states,) - if self.training: - dropout_probability = torch.rand([]) - if dropout_probability < self.layerdrop: - continue - - past_key_value = past_key_values[idx] if past_key_values is not None else None - - if self.gradient_checkpointing and self.training: - layer_outputs = self._gradient_checkpointing_func( - decoder_layer.__call__, - hidden_states, - attention_mask, - encoder_hidden_states, - encoder_attention_mask, - head_mask[idx] if head_mask is not None else None, - cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, - None, - output_attentions, - use_cache, - ) - else: - layer_outputs = decoder_layer( - hidden_states, - attention_mask=attention_mask, - encoder_hidden_states=encoder_hidden_states, - encoder_attention_mask=encoder_attention_mask, - layer_head_mask=(head_mask[idx] if head_mask is not None else None), - cross_attn_layer_head_mask=( - cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None - ), - past_key_value=past_key_value, - output_attentions=output_attentions, - use_cache=use_cache, - ) - hidden_states = layer_outputs[0] - - if use_cache: - next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) - - if output_attentions: - all_self_attns += (layer_outputs[1],) - - if encoder_hidden_states is not None: - all_cross_attentions += (layer_outputs[2],) - - # add hidden states from the last decoder layer - if output_hidden_states: - all_hidden_states += (hidden_states,) - - next_cache = next_decoder_cache if use_cache else None - if not return_dict: - return tuple( - v - for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] - if v is not None - ) - return BaseModelOutputWithPastAndCrossAttentions( - last_hidden_state=hidden_states, - past_key_values=next_cache, - hidden_states=all_hidden_states, - attentions=all_self_attns, - cross_attentions=all_cross_attentions, - ) - - -class Florence2LanguageModel(Florence2LanguagePreTrainedModel): - _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] - - def __init__(self, config: Florence2LanguageConfig): - super().__init__(config) - - padding_idx, vocab_size = config.pad_token_id, config.vocab_size - self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx) - - self.encoder = Florence2Encoder(config, self.shared) - self.decoder = Florence2Decoder(config, self.shared) - - # Initialize weights and apply final processing - self.post_init() - - def _tie_weights(self): - if self.config.tie_word_embeddings: - self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) - self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) - - def get_input_embeddings(self): - return self.shared - - def set_input_embeddings(self, value): - self.shared = value - self.encoder.embed_tokens = self.shared - self.decoder.embed_tokens = self.shared - - def get_encoder(self): - return self.encoder - - def get_decoder(self): - return self.decoder - - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - decoder_input_ids: Optional[torch.LongTensor] = None, - decoder_attention_mask: Optional[torch.LongTensor] = None, - head_mask: Optional[torch.Tensor] = None, - decoder_head_mask: Optional[torch.Tensor] = None, - cross_attn_head_mask: Optional[torch.Tensor] = None, - encoder_outputs: Optional[List[torch.FloatTensor]] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - decoder_inputs_embeds: Optional[torch.FloatTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, Seq2SeqModelOutput]: - # different to other models, Florence2 automatically creates decoder_input_ids from - # input_ids if no decoder_input_ids are provided - if decoder_input_ids is None and decoder_inputs_embeds is None: - if input_ids is None: - raise ValueError( - "If no `decoder_input_ids` or `decoder_inputs_embeds` are " - "passed, `input_ids` cannot be `None`. Please pass either " - "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`." - ) - - decoder_input_ids = shift_tokens_right( - input_ids, self.config.pad_token_id, self.config.decoder_start_token_id - ) - - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - use_cache = use_cache if use_cache is not None else self.config.use_cache - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - if encoder_outputs is None: - encoder_outputs = self.encoder( - input_ids=input_ids, - attention_mask=attention_mask, - head_mask=head_mask, - inputs_embeds=inputs_embeds, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True - elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): - encoder_outputs = BaseModelOutput( - last_hidden_state=encoder_outputs[0], - hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, - attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, - ) - - # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) - decoder_outputs = self.decoder( - input_ids=decoder_input_ids, - attention_mask=decoder_attention_mask, - encoder_hidden_states=encoder_outputs[0], - encoder_attention_mask=attention_mask, - head_mask=decoder_head_mask, - cross_attn_head_mask=cross_attn_head_mask, - past_key_values=past_key_values, - inputs_embeds=decoder_inputs_embeds, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - - if not return_dict: - return decoder_outputs + encoder_outputs - - return Seq2SeqModelOutput( - last_hidden_state=decoder_outputs.last_hidden_state, - past_key_values=decoder_outputs.past_key_values, - decoder_hidden_states=decoder_outputs.hidden_states, - decoder_attentions=decoder_outputs.attentions, - cross_attentions=decoder_outputs.cross_attentions, - encoder_last_hidden_state=encoder_outputs.last_hidden_state, - encoder_hidden_states=encoder_outputs.hidden_states, - encoder_attentions=encoder_outputs.attentions, - ) - - -class Florence2LanguageForConditionalGeneration(Florence2LanguagePreTrainedModel): - base_model_prefix = "model" - _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"] - _keys_to_ignore_on_load_missing = ["final_logits_bias"] - - def __init__(self, config: Florence2LanguageConfig): - super().__init__(config) - self.model = Florence2LanguageModel(config) - self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings))) - self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False) - - # Initialize weights and apply final processing - self.post_init() - - def get_encoder(self): - return self.model.get_encoder() - - def get_decoder(self): - return self.model.get_decoder() - - def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding: - new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of) - self._resize_final_logits_bias(new_embeddings.weight.shape[0]) - return new_embeddings - - def _resize_final_logits_bias(self, new_num_tokens: int) -> None: - old_num_tokens = self.final_logits_bias.shape[-1] - if new_num_tokens <= old_num_tokens: - new_bias = self.final_logits_bias[:, :new_num_tokens] - else: - extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device) - new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1) - self.register_buffer("final_logits_bias", new_bias) - - def get_output_embeddings(self): - return self.lm_head - - def set_output_embeddings(self, new_embeddings): - self.lm_head = new_embeddings - - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - decoder_input_ids: Optional[torch.LongTensor] = None, - decoder_attention_mask: Optional[torch.LongTensor] = None, - head_mask: Optional[torch.Tensor] = None, - decoder_head_mask: Optional[torch.Tensor] = None, - cross_attn_head_mask: Optional[torch.Tensor] = None, - encoder_outputs: Optional[List[torch.FloatTensor]] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - decoder_inputs_embeds: Optional[torch.FloatTensor] = None, - labels: Optional[torch.LongTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, Seq2SeqLMOutput]: - r""" - labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): - Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., - config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored - (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. - - Returns: - """ - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - if labels is not None: - if use_cache: - logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") - use_cache = False - if decoder_input_ids is None and decoder_inputs_embeds is None: - decoder_input_ids = shift_tokens_right( - labels, self.config.pad_token_id, self.config.decoder_start_token_id - ) - - outputs = self.model( - input_ids, - attention_mask=attention_mask, - decoder_input_ids=decoder_input_ids, - encoder_outputs=encoder_outputs, - decoder_attention_mask=decoder_attention_mask, - head_mask=head_mask, - decoder_head_mask=decoder_head_mask, - cross_attn_head_mask=cross_attn_head_mask, - past_key_values=past_key_values, - inputs_embeds=inputs_embeds, - decoder_inputs_embeds=decoder_inputs_embeds, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - - lm_logits = self.lm_head(outputs[0]) - lm_logits = lm_logits + self.final_logits_bias.to(lm_logits.device) - - masked_lm_loss = None - if labels is not None: - labels = labels.to(lm_logits.device) - loss_fct = CrossEntropyLoss() - masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) - - if not return_dict: - output = (lm_logits,) + outputs[1:] - return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output - - return Seq2SeqLMOutput( - loss=masked_lm_loss, - logits=lm_logits, - past_key_values=outputs.past_key_values, - decoder_hidden_states=outputs.decoder_hidden_states, - decoder_attentions=outputs.decoder_attentions, - cross_attentions=outputs.cross_attentions, - encoder_last_hidden_state=outputs.encoder_last_hidden_state, - encoder_hidden_states=outputs.encoder_hidden_states, - encoder_attentions=outputs.encoder_attentions, - ) - - def prepare_inputs_for_generation( - self, - decoder_input_ids, - past_key_values=None, - attention_mask=None, - decoder_attention_mask=None, - head_mask=None, - decoder_head_mask=None, - cross_attn_head_mask=None, - use_cache=None, - encoder_outputs=None, - **kwargs, - ): - # cut decoder_input_ids if past_key_values is used - if past_key_values is not None: - past_length = past_key_values[0][0].shape[2] - - # Some generation methods already pass only the last input ID - if decoder_input_ids.shape[1] > past_length: - remove_prefix_length = past_length - else: - # Default to old behavior: keep only final ID - remove_prefix_length = decoder_input_ids.shape[1] - 1 - - decoder_input_ids = decoder_input_ids[:, remove_prefix_length:] - - return { - "input_ids": None, # encoder_outputs is defined. input_ids not needed - "encoder_outputs": encoder_outputs, - "past_key_values": past_key_values, - "decoder_input_ids": decoder_input_ids, - "attention_mask": attention_mask, - "decoder_attention_mask": decoder_attention_mask, - "head_mask": head_mask, - "decoder_head_mask": decoder_head_mask, - "cross_attn_head_mask": cross_attn_head_mask, - "use_cache": use_cache, # change this to avoid caching (presumably for debugging) - } - - def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): - return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) - - @staticmethod - def _reorder_cache(past_key_values, beam_idx): - reordered_past = () - for layer_past in past_key_values: - # cached cross_attention states don't have to be reordered -> they are always the same - reordered_past += ( - tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2]) - + layer_past[2:], - ) - return reordered_past - -@dataclass -class Florence2Seq2SeqLMOutput(ModelOutput): - """ - Base class for Florence-2 model's outputs that also contains : pre-computed hidden states that can speed up sequential - decoding. - - Args: - loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): - Language modeling loss. - logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): - Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). - last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): - Sequence of hidden-states at the output of the last layer of the decoder of the model. - - If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, - hidden_size)` is output. - past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape - `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape - `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. - - Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention - blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. - decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): - Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + - one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. - - Hidden-states of the decoder at the output of each layer plus the optional initial embedding outputs. - decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): - Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, - sequence_length)`. - - Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the - self-attention heads. - cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): - Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, - sequence_length)`. - - Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the - weighted average in the cross-attention heads. - encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): - Sequence of hidden-states at the output of the last layer of the encoder of the model. - encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): - Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + - one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. - - Hidden-states of the encoder at the output of each layer plus the optional initial embedding outputs. - encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): - Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, - sequence_length)`. - - Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the - self-attention heads. - image_hidden_states (`tuple(torch.FloatTensor)`, *optional*): - Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, - num_image_tokens, hidden_size)`. - - image_hidden_states of the model produced by the vision encoder - """ - loss: Optional[torch.FloatTensor] = None - logits: torch.FloatTensor = None - last_hidden_state: torch.FloatTensor = None - past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None - decoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None - decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None - cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None - encoder_last_hidden_state: Optional[torch.FloatTensor] = None - encoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None - encoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None - image_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None - - -FLORENCE2_START_DOCSTRING = r""" - This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the - library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads - etc.) - - This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. - Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage - and behavior. - - Parameters: - config ([`Florence2Config`] or [`Florence2VisionConfig`]): - Model configuration class with all the parameters of the model. Initializing with a config file does not - load the weights associated with the model, only the configuration. Check out the - [`~PreTrainedModel.from_pretrained`] method to load the model weights. -""" - - -@add_start_docstrings( - "The bare Florence-2 Model outputting raw hidden-states without any specific head on top.", - FLORENCE2_START_DOCSTRING, -) -class Florence2PreTrainedModel(PreTrainedModel): - config_class = Florence2Config - base_model_prefix = "model" - supports_gradient_checkpointing = True - _skip_keys_device_placement = "past_key_values" - - @property - def _supports_flash_attn_2(self): - """ - Retrieve language_model's attribute to check whether the model supports - Flash Attention 2 or not. - """ - return self.language_model._supports_flash_attn_2 - - @property - def _supports_sdpa(self): - """ - Retrieve language_model's attribute to check whether the model supports - SDPA or not. - """ - return self.language_model._supports_sdpa - - -FLORENCE2_INPUTS_DOCSTRING = r""" - Args: - input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): - Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide - it. - - Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and - [`PreTrainedTokenizer.__call__`] for details. - - [What are input IDs?](../glossary#input-ids) - pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)): - The tensors corresponding to the input images. Pixel values can be obtained using - [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details ([]`Florence2Processor`] uses - [`CLIPImageProcessor`] for processing images). - attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): - Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - - - 1 for tokens that are **not masked**, - - 0 for tokens that are **masked**. - - [What are attention masks?](../glossary#attention-mask) - - Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and - [`PreTrainedTokenizer.__call__`] for details. - - If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see - `past_key_values`). - - If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] - and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more - information on the default strategy. - - - 1 indicates the head is **not masked**, - - 0 indicates the head is **masked**. - position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): - Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, - config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) - past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape - `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape - `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. - - Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention - blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. - - If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that - don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all - `decoder_input_ids` of shape `(batch_size, sequence_length)`. - inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): - Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This - is useful if you want more control over how to convert `input_ids` indices into associated vectors than the - model's internal embedding lookup matrix. - use_cache (`bool`, *optional*): - If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see - `past_key_values`). - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned - tensors for more detail. - output_hidden_states (`bool`, *optional*): - Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for - more detail. - return_dict (`bool`, *optional*): - Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. -""" - -@add_start_docstrings( - """The FLORENCE2 vision model without any head""", - FLORENCE2_START_DOCSTRING, -) -class Florence2VisionModel(Florence2PreTrainedModel): - def __init__(self, config: Florence2VisionConfig): - super().__init__(config) - assert config.model_type == 'davit', 'only DaViT is supported for now' - self.vision_tower = DaViT.from_config(config=config) - - self.post_init() - - def forward(self, pixel_values): - if len(pixel_values.shape) == 4: - x = self.vision_tower.forward_features_unpool(pixel_values) - else: - raise ValueError(f'invalid image shape {pixel_values.shape}') - return x - - -@add_start_docstrings( - """The FLORENCE2 vision model with projection layer""", - FLORENCE2_START_DOCSTRING, -) -class Florence2VisionModelWithProjection(Florence2PreTrainedModel): - def __init__(self, config: Florence2VisionConfig): - super().__init__(config) - assert config.model_type == 'davit', 'only DaViT is supported for now' - self.vision_tower = DaViT.from_config(config=config) - - self._build_image_projection_layers(config) - - self.post_init() - - def _build_image_projection_layers(self, config): - image_dim_out = config.dim_embed[-1] - dim_projection = config.projection_dim - self.image_projection = nn.Parameter( - torch.empty(image_dim_out, dim_projection) - ) - self.image_proj_norm = nn.LayerNorm(dim_projection) - image_pos_embed_config = config.image_pos_embed - if image_pos_embed_config['type'] == 'learned_abs_2d': - self.image_pos_embed = LearnedAbsolutePositionEmbedding2D( - embedding_dim=image_dim_out, - num_pos=image_pos_embed_config['max_pos_embeddings'] - ) - else: - raise NotImplementedError('Not implemented yet') - - self.image_feature_source = config.image_feature_source - - # temporal embedding - visual_temporal_embedding_config = config.visual_temporal_embedding - if visual_temporal_embedding_config['type'] == 'COSINE': - self.visual_temporal_embed = PositionalEmbeddingCosine1D( - embed_dim=image_dim_out, - max_seq_len=visual_temporal_embedding_config['max_temporal_embeddings'] - ) - else: - raise NotImplementedError('Not implemented yet') - - def forward(self, pixel_values): - if len(pixel_values.shape) == 4: - batch_size, C, H, W = pixel_values.shape - T = 1 - x = self.vision_tower.forward_features_unpool(pixel_values) - else: - raise ValueError(f'invalid image shape {pixel_values.shape}') - - if self.image_pos_embed is not None: - x = x.view(batch_size * T, -1, x.shape[-1]) - num_tokens = x.shape[-2] - h, w = int(num_tokens ** 0.5), int(num_tokens ** 0.5) - assert h * w == num_tokens, 'only support square feature maps for now' - x = x.view(batch_size * T, h, w, x.shape[-1]) - pos_embed = self.image_pos_embed(x) - x = x + pos_embed - x = x.view(batch_size, T * h*w, x.shape[-1]) - - if self.visual_temporal_embed is not None: - visual_temporal_embed = self.visual_temporal_embed(x.view(batch_size, T, -1, x.shape[-1])[:, :, 0]) - x = x.view(batch_size, T, -1, x.shape[-1]) + visual_temporal_embed.view(1, T, 1, x.shape[-1]) - - x_feat_dict = {} - - spatial_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=2) - x_feat_dict['spatial_avg_pool'] = spatial_avg_pool_x - - temporal_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=1) - x_feat_dict['temporal_avg_pool'] = temporal_avg_pool_x - - x = x.view(batch_size, T, -1, x.shape[-1])[:, -1] - x_feat_dict['last_frame'] = x - - new_x = [] - for _image_feature_source in self.image_feature_source: - if _image_feature_source not in x_feat_dict: - raise ValueError('invalid image feature source: {}'.format(_image_feature_source)) - new_x.append(x_feat_dict[_image_feature_source]) - - x = torch.cat(new_x, dim=1) - - x = x @ self.image_projection - x = self.image_proj_norm(x) - - - return x - - - -@add_start_docstrings( - """The FLORENCE2 model which consists of a vision backbone and a language model.""", - FLORENCE2_START_DOCSTRING, -) -class Florence2ForConditionalGeneration(Florence2PreTrainedModel): - def __init__(self, config: Florence2Config): - super().__init__(config) - assert config.vision_config.model_type == 'davit', 'only DaViT is supported for now' - self.vision_tower = DaViT.from_config(config=config.vision_config) - # remove unused layers - del self.vision_tower.head - del self.vision_tower.norms - - self.vocab_size = config.vocab_size - self._attn_implementation = config._attn_implementation - self._build_image_projection_layers(config) - - language_model = Florence2LanguageForConditionalGeneration(config=config.text_config) - - if language_model._tied_weights_keys is not None: - self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys] - self.language_model = language_model - - self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 - self.post_init() - - def _build_image_projection_layers(self, config): - image_dim_out = config.vision_config.dim_embed[-1] - dim_projection = config.vision_config.projection_dim - self.image_projection = nn.Parameter( - torch.empty(image_dim_out, dim_projection) - ) - self.image_proj_norm = nn.LayerNorm(dim_projection) - image_pos_embed_config = config.vision_config.image_pos_embed - if image_pos_embed_config['type'] == 'learned_abs_2d': - self.image_pos_embed = LearnedAbsolutePositionEmbedding2D( - embedding_dim=image_dim_out, - num_pos=image_pos_embed_config['max_pos_embeddings'] - ) - else: - raise NotImplementedError('Not implemented yet') - - self.image_feature_source = config.vision_config.image_feature_source - - # temporal embedding - visual_temporal_embedding_config = config.vision_config.visual_temporal_embedding - if visual_temporal_embedding_config['type'] == 'COSINE': - self.visual_temporal_embed = PositionalEmbeddingCosine1D( - embed_dim=image_dim_out, - max_seq_len=visual_temporal_embedding_config['max_temporal_embeddings'] - ) - else: - raise NotImplementedError('Not implemented yet') - - def get_encoder(self): - return self.language_model.get_encoder() - - def get_decoder(self): - return self.language_model.get_decoder() - - def get_input_embeddings(self): - return self.language_model.get_input_embeddings() - - def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding: - model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of) - # update vocab size - self.config.text_config.vocab_size = model_embeds.num_embeddings - self.config.vocab_size = model_embeds.num_embeddings - self.vocab_size = model_embeds.num_embeddings - return model_embeds - - def _encode_image(self, pixel_values): - if len(pixel_values.shape) == 4: - batch_size, C, H, W = pixel_values.shape - T = 1 - x = self.vision_tower.forward_features_unpool(pixel_values) - else: - raise ValueError(f'invalid image shape {pixel_values.shape}') - - if self.image_pos_embed is not None: - x = x.view(batch_size * T, -1, x.shape[-1]) - num_tokens = x.shape[-2] - h, w = int(num_tokens ** 0.5), int(num_tokens ** 0.5) - assert h * w == num_tokens, 'only support square feature maps for now' - x = x.view(batch_size * T, h, w, x.shape[-1]) - pos_embed = self.image_pos_embed(x) - x = x + pos_embed - x = x.view(batch_size, T * h*w, x.shape[-1]) - - if self.visual_temporal_embed is not None: - visual_temporal_embed = self.visual_temporal_embed(x.view(batch_size, T, -1, x.shape[-1])[:, :, 0]) - x = x.view(batch_size, T, -1, x.shape[-1]) + visual_temporal_embed.view(1, T, 1, x.shape[-1]) - - x_feat_dict = {} - - spatial_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=2) - x_feat_dict['spatial_avg_pool'] = spatial_avg_pool_x - - temporal_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=1) - x_feat_dict['temporal_avg_pool'] = temporal_avg_pool_x - - x = x.view(batch_size, T, -1, x.shape[-1])[:, -1] - x_feat_dict['last_frame'] = x - - new_x = [] - for _image_feature_source in self.image_feature_source: - if _image_feature_source not in x_feat_dict: - raise ValueError('invalid image feature source: {}'.format(_image_feature_source)) - new_x.append(x_feat_dict[_image_feature_source]) - - x = torch.cat(new_x, dim=1) - - x = x @ self.image_projection - x = self.image_proj_norm(x) - - return x - - def _merge_input_ids_with_image_features( - self, image_features, inputs_embeds - ): - batch_size, image_token_length = image_features.size()[:-1] - device = image_features.device - image_attention_mask = torch.ones(batch_size, image_token_length, device=device) - - # task_prefix_embeds: [batch_size, padded_context_length, hidden_size] - # task_prefix_attention_mask: [batch_size, context_length] - if inputs_embeds is None: - return image_features, image_attention_mask - - task_prefix_embeds = inputs_embeds - task_prefix_attention_mask = torch.ones(batch_size, task_prefix_embeds.size(1), device=device) - - if len(task_prefix_attention_mask.shape) == 3: - task_prefix_attention_mask = task_prefix_attention_mask[:, 0] - - # concat [image embeds, task prefix embeds] - inputs_embeds = torch.cat([image_features, task_prefix_embeds], dim=1) - attention_mask = torch.cat([image_attention_mask, task_prefix_attention_mask], dim=1) - - return inputs_embeds, attention_mask - - - @add_start_docstrings_to_model_forward(FLORENCE2_INPUTS_DOCSTRING) - @replace_return_docstrings(output_type=Florence2Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) - def forward( - self, - input_ids: torch.LongTensor = None, - pixel_values: torch.FloatTensor = None, - attention_mask: Optional[torch.Tensor] = None, - decoder_input_ids: Optional[torch.LongTensor] = None, - decoder_attention_mask: Optional[torch.LongTensor] = None, - head_mask: Optional[torch.Tensor] = None, - decoder_head_mask: Optional[torch.Tensor] = None, - cross_attn_head_mask: Optional[torch.Tensor] = None, - encoder_outputs: Optional[List[torch.FloatTensor]] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - decoder_inputs_embeds: Optional[torch.FloatTensor] = None, - labels: Optional[torch.LongTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, Florence2Seq2SeqLMOutput]: - r""" - Args: - labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): - Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., - config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored - (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. - - Returns: - - Example: - - ```python - >>> from PIL import Image - >>> import requests - >>> from transformers import AutoProcessor, Florence2ForConditionalGeneration - - >>> model = Florence2ForConditionalGeneration.from_pretrained("microsoft/Florence-2-large") - >>> processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large") - - >>> prompt = "