MichaelYxWang commited on
Commit
98c5d5e
·
1 Parent(s): 6da6f6a

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.25 +/- 0.14
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b4e683c38e60e955093051a0541a2ca7ca68823f44c40112d310ff05b6b97b2
3
+ size 106915
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7845b1254a60>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7845b105c540>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1692077438688671210,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAltcpv+sLNb7kiaY+FUqUPknivTs/0eQ+KfofvwB99D6pBa0+eNzJvxmGaT9koyY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3Xuxv13Kir7azcc/OR9yvwKkLr/vxOM+uLkOv314kj+x+EI/DX6sv3td/T57nmQ/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACW1ym/6ws1vuSJpj5GSHG/epcIvuEoVz8VSpQ+SeK9Oz/R5D6ulPw+z2zJud1Dxz4p+h+/AH30PqkFrT7YS0i/Ok/ZP/zGYT943Mm/GYZpP2SjJj/NmWi/Sv4tvlhfuD+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[-0.66344583 -0.17680328 0.32527077]\n [ 0.2896277 0.0057948 0.44690892]\n [-0.6249109 0.47751617 0.3379338 ]\n [-1.5770407 0.9122024 0.65093064]]",
34
+ "desired_goal": "[[-1.3865925 -0.27107516 1.5609696 ]\n [-0.9457889 -0.68219006 0.44486186]\n [-0.55752134 1.144302 0.7616072 ]\n [-1.3475968 0.49485382 0.8930432 ]]",
35
+ "observation": "[[-6.6344583e-01 -1.7680328e-01 3.2527077e-01 -9.4250906e-01\n -1.3339034e-01 8.4046751e-01]\n [ 2.8962770e-01 5.7947976e-03 4.4690892e-01 4.9332184e-01\n -3.8418776e-04 3.8918963e-01]\n [-6.2491089e-01 4.7751617e-01 3.3793381e-01 -7.8240728e-01\n 1.6977303e+00 8.8194251e-01]\n [-1.5770407e+00 9.1220242e-01 6.5093064e-01 -9.0859681e-01\n -1.6991535e-01 1.4404097e+00]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvOn+vAg+3r389dM9il8LPtu0obvyziM+4DERvklNFz0Ua6Y8fWdGvdDKkr2scJQ8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[-0.03111731 -0.10851675 0.10349652]\n [ 0.13610664 -0.00493489 0.15996912]\n [-0.14179182 0.03693894 0.02031473]\n [-0.04843854 -0.0716759 0.01812013]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9BAKOT7l7uMAWyUSwOMAXSUR0CkiTA8bJfZdX2UKGgGR7+83kxREWqMaAdLAmgIR0CkibWKl54XdX2UKGgGR7/LOxB3Roh7aAdLA2gIR0CkiXh+vyLAdX2UKGgGR7/GPJ7sv7FbaAdLA2gIR0CkiPsc6vJSdX2UKGgGR7/Gr/bTMJQdaAdLA2gIR0CkicVawD/3dX2UKGgGR7/PlzU7Sy+paAdLBGgIR0CkiUPqcEvCdX2UKGgGR7/Pyvs7dSEUaAdLA2gIR0CkiYguh9LIdX2UKGgGR7/bdp7CzkZKaAdLBGgIR0CkiQ5amoBJdX2UKGgGR7/MJxeb/ffoaAdLA2gIR0CkidE3Kji5dX2UKGgGR7/PeYUnG828aAdLA2gIR0CkiU/a6BiDdX2UKGgGR7/NguRLbpNcaAdLA2gIR0CkiZVI7NjcdX2UKGgGR7+/+n62v0ROaAdLAmgIR0Ckidwe/5+IdX2UKGgGR7+0iOearmyPaAdLAmgIR0CkiVqqGUOedX2UKGgGR7/KhB7eEZivaAdLA2gIR0CkiR1pKzzFdX2UKGgGR7/QtP557gKnaAdLA2gIR0CkiaLuYx+KdX2UKGgGR7/LrSE12q1gaAdLA2gIR0Ckiefu1F6SdX2UKGgGR7/MU8FINEw4aAdLA2gIR0CkiWbTtsvadX2UKGgGR7/IQSSNfgJkaAdLA2gIR0CkiSl5v99/dX2UKGgGR7/Hq8lHBk7PaAdLA2gIR0Ckifa+WWyDdX2UKGgGR7/LB/I8yN4raAdLBGgIR0CkibX6qKgqdX2UKGgGR7/HiMo+fRNRaAdLA2gIR0CkiXYRujyndX2UKGgGR7/Wy2QXAM2FaAdLA2gIR0CkiTjEm6XjdX2UKGgGR7/BOAy2x6fKaAdLAmgIR0CkiUCMYMvzdX2UKGgGR7/HFrEcbR4RaAdLA2gIR0CkigNyHVPOdX2UKGgGR7/OrvLHMlkZaAdLA2gIR0CkiYIl2NeddX2UKGgGR7/UBGhEjPfLaAdLBGgIR0CkiciADq4ZdX2UKGgGR7+1GFzuF6AwaAdLAmgIR0Ckig1vMr3CdX2UKGgGR7+4oAn2IwdsaAdLAmgIR0CkiYwHRkVfdX2UKGgGR7/BZPl+3H7xaAdLAmgIR0CkidB5X2dvdX2UKGgGR7/cCj1wo9cKaAdLBGgIR0CkiVKx1PnCdX2UKGgGR7+/rpqynk1eaAdLAmgIR0CkihVyeZogdX2UKGgGR7+U+1SflIVeaAdLAWgIR0CkidSEDhcadX2UKGgGR7+5cJMQEpy7aAdLAmgIR0CkiZSU1Q67dX2UKGgGR7+hreqJdjXnaAdLAWgIR0Ckihr9uP3jdX2UKGgGR7/MeMhouf29aAdLA2gIR0CkiWK/ub7TdX2UKGgGR7/MhsZYPoV3aAdLA2gIR0CkieS/0ulHdX2UKGgGR7/OKFZgXuVpaAdLA2gIR0CkiaSXUpd9dX2UKGgGR7/IRsdkrf+CaAdLA2gIR0Ckiir1mJ3xdX2UKGgGR7+57hNucc2jaAdLAmgIR0CkifDjJdSmdX2UKGgGR7/QES/TLGJfaAdLA2gIR0CkiXOjIq9XdX2UKGgGR7/UD0lJHy3DaAdLA2gIR0CkibUrbxmTdX2UKGgGR7/JAood+5OKaAdLA2gIR0Ckijz19ORDdX2UKGgGR7++ZXuE25xzaAdLAmgIR0CkiX4/3WWhdX2UKGgGR7/TrwOOKfnPaAdLBGgIR0CkigOZLIxQdX2UKGgGR7/Sta6jFhoeaAdLA2gIR0CkicNOVPepdX2UKGgGR7/KdELH+6y0aAdLA2gIR0Ckikj59E1EdX2UKGgGR7/JIeYD1XeWaAdLA2gIR0CkiYocinpCdX2UKGgGR7+7EdeY2Kl6aAdLAmgIR0CkigvaL4vfdX2UKGgGR7/UqEvkBCD3aAdLA2gIR0CkidEtVaOhdX2UKGgGR7/MF23azu4PaAdLA2gIR0CkilbK7qY7dX2UKGgGR7+ylxffGdZraAdLAmgIR0CkihXqAz55dX2UKGgGR7+8dPtUn5SFaAdLAmgIR0CkidmhM8HOdX2UKGgGR7/aY287IT4+aAdLBGgIR0CkiZxCY1HfdX2UKGgGR7/Q7ihnJ1aGaAdLA2gIR0CkimLHlwLmdX2UKGgGR7/XcxTKkl/paAdLA2gIR0CkiiJPZZjhdX2UKGgGR7++XMQmNR3vaAdLAmgIR0CkiaSSNfgKdX2UKGgGR7/JMJx//echaAdLA2gIR0CkiegfdRBNdX2UKGgGR7++VcD8tPHlaAdLAmgIR0Ckia6KLsKLdX2UKGgGR7/TNMoMKCxvaAdLA2gIR0CkinFFUhmodX2UKGgGR7/F3IMjNY8uaAdLA2gIR0CkijBcRlH0dX2UKGgGR7/OhQFcIJJHaAdLA2gIR0CkifPZh8YydX2UKGgGR7+4S26TW5H3aAdLAmgIR0CkijgQYk3TdX2UKGgGR7/PWy1NQCSzaAdLA2gIR0CkibouPFNtdX2UKGgGR7/XPjXFtKqXaAdLBGgIR0CkioMS9M9KdX2UKGgGR7+VZs9B8hLXaAdLAWgIR0CkiobMxGlRdX2UKGgGR7/PlPrOZ9eAaAdLA2gIR0CkikX1J17qdX2UKGgGR7/Y3FUADJU6aAdLBGgIR0CkigWc8TzvdX2UKGgGR7/GnMMZxaPkaAdLA2gIR0CkichLPD51dX2UKGgGR7+6QPqcEvCeaAdLAmgIR0Ckik2Gyon8dX2UKGgGR7/HKkEcKgIyaAdLA2gIR0CkihMm4RVZdX2UKGgGR7/YaB7NSqEOaAdLBGgIR0Ckiph9kSVXdX2UKGgGR7+ymO2iL2pRaAdLAmgIR0CkileSKWLQdX2UKGgGR7/YuTA31jAjaAdLBGgIR0Ckidmp2ll9dX2UKGgGR7+0M2FWXC0oaAdLAmgIR0Ckil8tPHktdX2UKGgGR7/A3hn8KohqaAdLAmgIR0CkieGViWmhdX2UKGgGR7/SsMy8BdUsaAdLA2gIR0CkiqSv9tMxdX2UKGgGR7/WYDDCP6sRaAdLBGgIR0CkiiOclPaddX2UKGgGR7+0K6WgOBlMaAdLAmgIR0Ckievg3tKJdX2UKGgGR7/Uy0KJEYwZaAdLA2gIR0Ckim2aDwpfdX2UKGgGR7/JEbYK6WgOaAdLA2gIR0CkirKLKmsOdX2UKGgGR7/QCNS619fDaAdLA2gIR0CkijEeQuEmdX2UKGgGR7/BtKqXF98aaAdLAmgIR0CkifPNmlImdX2UKGgGR7+o2/BWPtD2aAdLAWgIR0CkifguZkTYdX2UKGgGR7/Luc+aBqbjaAdLA2gIR0CkinoUzsQedX2UKGgGR7+gBPsRg7YDaAdLAWgIR0Ckifwu/UONdX2UKGgGR7/RamXPZ7HAaAdLA2gIR0CkisEXUH6edX2UKGgGR7+igElme18caAdLAWgIR0CkioAvUSZjdX2UKGgGR7/TH80k4WDZaAdLBGgIR0CkikPZ7HAAdX2UKGgGR7++EHt4RmK7aAdLAmgIR0CkigZwwTM8dX2UKGgGR7+0FW4mTkhiaAdLAmgIR0CkislAmiQDdX2UKGgGR7/BdqtYB/7SaAdLAmgIR0CkiktfXwsodX2UKGgGR7+29Gqgh8pkaAdLAmgIR0CkitDIq9XcdX2UKGgGR7/V9/z8P4EfaAdLBGgIR0CkipAssg+ydX2UKGgGR7/IGxlg+hXbaAdLA2gIR0CkihJ8WsRydX2UKGgGR7/MVj7Q9ic5aAdLA2gIR0CkilnIhhYvdX2UKGgGR7/RrKeTV2A5aAdLA2gIR0Ckip4xtYSydX2UKGgGR7/G9xp+MIeHaAdLA2gIR0CkiiB2GIsRdX2UKGgGR7/WXJ5mh/RWaAdLBGgIR0CkiuOBDohZdX2UKGgGR7+zk6tDD0lJaAdLAmgIR0CkimJaA4GVdX2UKGgGR7+2zAvcrRShaAdLAmgIR0CkiqbC79Q5dWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50e92c24b82b7a956629113f7ce1e75a8ce41420991813ee82cae9f110c5e831
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:009e2b9c599320aed7cf8d20c4921aed16e53f40e9603a0cb7ee098ba47be516
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7845b1254a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7845b105c540>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692077438688671210, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAltcpv+sLNb7kiaY+FUqUPknivTs/0eQ+KfofvwB99D6pBa0+eNzJvxmGaT9koyY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3Xuxv13Kir7azcc/OR9yvwKkLr/vxOM+uLkOv314kj+x+EI/DX6sv3td/T57nmQ/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACW1ym/6ws1vuSJpj5GSHG/epcIvuEoVz8VSpQ+SeK9Oz/R5D6ulPw+z2zJud1Dxz4p+h+/AH30PqkFrT7YS0i/Ok/ZP/zGYT943Mm/GYZpP2SjJj/NmWi/Sv4tvlhfuD+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.66344583 -0.17680328 0.32527077]\n [ 0.2896277 0.0057948 0.44690892]\n [-0.6249109 0.47751617 0.3379338 ]\n [-1.5770407 0.9122024 0.65093064]]", "desired_goal": "[[-1.3865925 -0.27107516 1.5609696 ]\n [-0.9457889 -0.68219006 0.44486186]\n [-0.55752134 1.144302 0.7616072 ]\n [-1.3475968 0.49485382 0.8930432 ]]", "observation": "[[-6.6344583e-01 -1.7680328e-01 3.2527077e-01 -9.4250906e-01\n -1.3339034e-01 8.4046751e-01]\n [ 2.8962770e-01 5.7947976e-03 4.4690892e-01 4.9332184e-01\n -3.8418776e-04 3.8918963e-01]\n [-6.2491089e-01 4.7751617e-01 3.3793381e-01 -7.8240728e-01\n 1.6977303e+00 8.8194251e-01]\n [-1.5770407e+00 9.1220242e-01 6.5093064e-01 -9.0859681e-01\n -1.6991535e-01 1.4404097e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvOn+vAg+3r389dM9il8LPtu0obvyziM+4DERvklNFz0Ua6Y8fWdGvdDKkr2scJQ8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.03111731 -0.10851675 0.10349652]\n [ 0.13610664 -0.00493489 0.15996912]\n [-0.14179182 0.03693894 0.02031473]\n [-0.04843854 -0.0716759 0.01812013]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9BAKOT7l7uMAWyUSwOMAXSUR0CkiTA8bJfZdX2UKGgGR7+83kxREWqMaAdLAmgIR0CkibWKl54XdX2UKGgGR7/LOxB3Roh7aAdLA2gIR0CkiXh+vyLAdX2UKGgGR7/GPJ7sv7FbaAdLA2gIR0CkiPsc6vJSdX2UKGgGR7/Gr/bTMJQdaAdLA2gIR0CkicVawD/3dX2UKGgGR7/PlzU7Sy+paAdLBGgIR0CkiUPqcEvCdX2UKGgGR7/Pyvs7dSEUaAdLA2gIR0CkiYguh9LIdX2UKGgGR7/bdp7CzkZKaAdLBGgIR0CkiQ5amoBJdX2UKGgGR7/MJxeb/ffoaAdLA2gIR0CkidE3Kji5dX2UKGgGR7/PeYUnG828aAdLA2gIR0CkiU/a6BiDdX2UKGgGR7/NguRLbpNcaAdLA2gIR0CkiZVI7NjcdX2UKGgGR7+/+n62v0ROaAdLAmgIR0Ckidwe/5+IdX2UKGgGR7+0iOearmyPaAdLAmgIR0CkiVqqGUOedX2UKGgGR7/KhB7eEZivaAdLA2gIR0CkiR1pKzzFdX2UKGgGR7/QtP557gKnaAdLA2gIR0CkiaLuYx+KdX2UKGgGR7/LrSE12q1gaAdLA2gIR0Ckiefu1F6SdX2UKGgGR7/MU8FINEw4aAdLA2gIR0CkiWbTtsvadX2UKGgGR7/IQSSNfgJkaAdLA2gIR0CkiSl5v99/dX2UKGgGR7/Hq8lHBk7PaAdLA2gIR0Ckifa+WWyDdX2UKGgGR7/LB/I8yN4raAdLBGgIR0CkibX6qKgqdX2UKGgGR7/HiMo+fRNRaAdLA2gIR0CkiXYRujyndX2UKGgGR7/Wy2QXAM2FaAdLA2gIR0CkiTjEm6XjdX2UKGgGR7/BOAy2x6fKaAdLAmgIR0CkiUCMYMvzdX2UKGgGR7/HFrEcbR4RaAdLA2gIR0CkigNyHVPOdX2UKGgGR7/OrvLHMlkZaAdLA2gIR0CkiYIl2NeddX2UKGgGR7/UBGhEjPfLaAdLBGgIR0CkiciADq4ZdX2UKGgGR7+1GFzuF6AwaAdLAmgIR0Ckig1vMr3CdX2UKGgGR7+4oAn2IwdsaAdLAmgIR0CkiYwHRkVfdX2UKGgGR7/BZPl+3H7xaAdLAmgIR0CkidB5X2dvdX2UKGgGR7/cCj1wo9cKaAdLBGgIR0CkiVKx1PnCdX2UKGgGR7+/rpqynk1eaAdLAmgIR0CkihVyeZogdX2UKGgGR7+U+1SflIVeaAdLAWgIR0CkidSEDhcadX2UKGgGR7+5cJMQEpy7aAdLAmgIR0CkiZSU1Q67dX2UKGgGR7+hreqJdjXnaAdLAWgIR0Ckihr9uP3jdX2UKGgGR7/MeMhouf29aAdLA2gIR0CkiWK/ub7TdX2UKGgGR7/MhsZYPoV3aAdLA2gIR0CkieS/0ulHdX2UKGgGR7/OKFZgXuVpaAdLA2gIR0CkiaSXUpd9dX2UKGgGR7/IRsdkrf+CaAdLA2gIR0Ckiir1mJ3xdX2UKGgGR7+57hNucc2jaAdLAmgIR0CkifDjJdSmdX2UKGgGR7/QES/TLGJfaAdLA2gIR0CkiXOjIq9XdX2UKGgGR7/UD0lJHy3DaAdLA2gIR0CkibUrbxmTdX2UKGgGR7/JAood+5OKaAdLA2gIR0Ckijz19ORDdX2UKGgGR7++ZXuE25xzaAdLAmgIR0CkiX4/3WWhdX2UKGgGR7/TrwOOKfnPaAdLBGgIR0CkigOZLIxQdX2UKGgGR7/Sta6jFhoeaAdLA2gIR0CkicNOVPepdX2UKGgGR7/KdELH+6y0aAdLA2gIR0Ckikj59E1EdX2UKGgGR7/JIeYD1XeWaAdLA2gIR0CkiYocinpCdX2UKGgGR7+7EdeY2Kl6aAdLAmgIR0CkigvaL4vfdX2UKGgGR7/UqEvkBCD3aAdLA2gIR0CkidEtVaOhdX2UKGgGR7/MF23azu4PaAdLA2gIR0CkilbK7qY7dX2UKGgGR7+ylxffGdZraAdLAmgIR0CkihXqAz55dX2UKGgGR7+8dPtUn5SFaAdLAmgIR0CkidmhM8HOdX2UKGgGR7/aY287IT4+aAdLBGgIR0CkiZxCY1HfdX2UKGgGR7/Q7ihnJ1aGaAdLA2gIR0CkimLHlwLmdX2UKGgGR7/XcxTKkl/paAdLA2gIR0CkiiJPZZjhdX2UKGgGR7++XMQmNR3vaAdLAmgIR0CkiaSSNfgKdX2UKGgGR7/JMJx//echaAdLA2gIR0CkiegfdRBNdX2UKGgGR7++VcD8tPHlaAdLAmgIR0Ckia6KLsKLdX2UKGgGR7/TNMoMKCxvaAdLA2gIR0CkinFFUhmodX2UKGgGR7/F3IMjNY8uaAdLA2gIR0CkijBcRlH0dX2UKGgGR7/OhQFcIJJHaAdLA2gIR0CkifPZh8YydX2UKGgGR7+4S26TW5H3aAdLAmgIR0CkijgQYk3TdX2UKGgGR7/PWy1NQCSzaAdLA2gIR0CkibouPFNtdX2UKGgGR7/XPjXFtKqXaAdLBGgIR0CkioMS9M9KdX2UKGgGR7+VZs9B8hLXaAdLAWgIR0CkiobMxGlRdX2UKGgGR7/PlPrOZ9eAaAdLA2gIR0CkikX1J17qdX2UKGgGR7/Y3FUADJU6aAdLBGgIR0CkigWc8TzvdX2UKGgGR7/GnMMZxaPkaAdLA2gIR0CkichLPD51dX2UKGgGR7+6QPqcEvCeaAdLAmgIR0Ckik2Gyon8dX2UKGgGR7/HKkEcKgIyaAdLA2gIR0CkihMm4RVZdX2UKGgGR7/YaB7NSqEOaAdLBGgIR0Ckiph9kSVXdX2UKGgGR7+ymO2iL2pRaAdLAmgIR0CkileSKWLQdX2UKGgGR7/YuTA31jAjaAdLBGgIR0Ckidmp2ll9dX2UKGgGR7+0M2FWXC0oaAdLAmgIR0Ckil8tPHktdX2UKGgGR7/A3hn8KohqaAdLAmgIR0CkieGViWmhdX2UKGgGR7/SsMy8BdUsaAdLA2gIR0CkiqSv9tMxdX2UKGgGR7/WYDDCP6sRaAdLBGgIR0CkiiOclPaddX2UKGgGR7+0K6WgOBlMaAdLAmgIR0Ckievg3tKJdX2UKGgGR7/Uy0KJEYwZaAdLA2gIR0Ckim2aDwpfdX2UKGgGR7/JEbYK6WgOaAdLA2gIR0CkirKLKmsOdX2UKGgGR7/QCNS619fDaAdLA2gIR0CkijEeQuEmdX2UKGgGR7/BtKqXF98aaAdLAmgIR0CkifPNmlImdX2UKGgGR7+o2/BWPtD2aAdLAWgIR0CkifguZkTYdX2UKGgGR7/Luc+aBqbjaAdLA2gIR0CkinoUzsQedX2UKGgGR7+gBPsRg7YDaAdLAWgIR0Ckifwu/UONdX2UKGgGR7/RamXPZ7HAaAdLA2gIR0CkisEXUH6edX2UKGgGR7+igElme18caAdLAWgIR0CkioAvUSZjdX2UKGgGR7/TH80k4WDZaAdLBGgIR0CkikPZ7HAAdX2UKGgGR7++EHt4RmK7aAdLAmgIR0CkigZwwTM8dX2UKGgGR7+0FW4mTkhiaAdLAmgIR0CkislAmiQDdX2UKGgGR7/BdqtYB/7SaAdLAmgIR0CkiktfXwsodX2UKGgGR7+29Gqgh8pkaAdLAmgIR0CkitDIq9XcdX2UKGgGR7/V9/z8P4EfaAdLBGgIR0CkipAssg+ydX2UKGgGR7/IGxlg+hXbaAdLA2gIR0CkihJ8WsRydX2UKGgGR7/MVj7Q9ic5aAdLA2gIR0CkilnIhhYvdX2UKGgGR7/RrKeTV2A5aAdLA2gIR0Ckip4xtYSydX2UKGgGR7/G9xp+MIeHaAdLA2gIR0CkiiB2GIsRdX2UKGgGR7/WXJ5mh/RWaAdLBGgIR0CkiuOBDohZdX2UKGgGR7+zk6tDD0lJaAdLAmgIR0CkimJaA4GVdX2UKGgGR7+2zAvcrRShaAdLAmgIR0CkiqbC79Q5dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (683 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.24852397823706268, "std_reward": 0.14316340956880116, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-15T06:25:28.581521"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c129a6356de6de07d587a81eb844fa2c7ba6e1d25166a649035e2d9be062f2a5
3
+ size 2623