Second iteration
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +1 -1
- a2c-PandaReachDense-v2/data +13 -13
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.34 +/- 0.10
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 108023
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ebe20f754b567adf1bd642a3f971f82e2cdd6e903fbf5cc7358388238229ac67
|
3 |
size 108023
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -46,19 +46,19 @@
|
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
-
"learning_rate": 0.
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[ 0.
|
60 |
-
"desired_goal": "[[
|
61 |
-
"observation": "[[ 0.
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,9 +66,9 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
@@ -77,7 +77,7 @@
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
@@ -85,7 +85,7 @@
|
|
85 |
},
|
86 |
"_n_updates": 50000,
|
87 |
"n_steps": 5,
|
88 |
-
"gamma": 0.
|
89 |
"gae_lambda": 1.0,
|
90 |
"ent_coef": 0.0,
|
91 |
"vf_coef": 0.5,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6bc1be28b0>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f6bc1be70f0>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1675426319524337193,
|
50 |
+
"learning_rate": 0.0003,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA8/HWPkfKrruwkwo/8/HWPkfKrruwkwo/8/HWPkfKrruwkwo/8/HWPkfKrruwkwo/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAupDGP7SsvD28Z26/h774vS3zKz8WLhI/uGSSvk7hbj+3Jl0/iqwiv5tMKb/HLdq/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADz8dY+R8quu7CTCj+XRK07XqtZu6JkkDzz8dY+R8quu7CTCj+XRK07XqtZu6JkkDzz8dY+R8quu7CTCj+XRK07XqtZu6JkkDzz8dY+R8quu7CTCj+XRK07XqtZu6JkkDyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.41981468 -0.00533417 0.54131603]\n [ 0.41981468 -0.00533417 0.54131603]\n [ 0.41981468 -0.00533417 0.54131603]\n [ 0.41981468 -0.00533417 0.54131603]]",
|
60 |
+
"desired_goal": "[[ 1.5512917 0.09212628 -0.93127036]\n [-0.12145715 0.6716793 0.5710157 ]\n [-0.28592467 0.9331254 0.863872 ]\n [-0.63544524 -0.66132516 -1.704522 ]]",
|
61 |
+
"observation": "[[ 0.41981468 -0.00533417 0.54131603 0.00528772 -0.00332137 0.01762611]\n [ 0.41981468 -0.00533417 0.54131603 0.00528772 -0.00332137 0.01762611]\n [ 0.41981468 -0.00533417 0.54131603 0.00528772 -0.00332137 0.01762611]\n [ 0.41981468 -0.00533417 0.54131603 0.00528772 -0.00332137 0.01762611]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyPAxPWtb3z27kJU9X7xgvfnPEj7BmAA+OhsGPhgSAT6mjww9MHQMPmXgXT1Z5qc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.04344252 0.10906108 0.07302996]\n [-0.05486714 0.14337148 0.12558271]\n [ 0.13096324 0.12604558 0.03431668]\n [ 0.13716197 0.05416908 0.08198232]]",
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITYOieQCLyL+UhpRSlIwBbJRLMowBdJRHQKQoi79ycTd1fZQoaAZoCWgPQwhQ3zKny2Lgv5SGlFKUaBVLMmgWR0CkKE1/MGHIdX2UKGgGaAloD0MIMxgjEoWW37+UhpRSlGgVSzJoFkdApCgS15Sm7HV9lChoBmgJaA9DCObLC7CPTuS/lIaUUpRoFUsyaBZHQKQn2Sjgydp1fZQoaAZoCWgPQwg6zQLtDinUv5SGlFKUaBVLMmgWR0CkKaGOuJUHdX2UKGgGaAloD0MI6E6w/zo35b+UhpRSlGgVSzJoFkdApCljTx5LRXV9lChoBmgJaA9DCATo9/2bF9W/lIaUUpRoFUsyaBZHQKQpKKa5PM11fZQoaAZoCWgPQwgC1xUzwtvgv5SGlFKUaBVLMmgWR0CkKO5imVJMdX2UKGgGaAloD0MIb0kO2NXk17+UhpRSlGgVSzJoFkdApCq6Hj6vaHV9lChoBmgJaA9DCNWxSumZ3uS/lIaUUpRoFUsyaBZHQKQqfM+NcW11fZQoaAZoCWgPQwj6Qsh5/5/mv5SGlFKUaBVLMmgWR0CkKkMLORkmdX2UKGgGaAloD0MIr+5YbJOK07+UhpRSlGgVSzJoFkdApCoKJZW7v3V9lChoBmgJaA9DCJ5+UBcplNi/lIaUUpRoFUsyaBZHQKQr0qXnhbZ1fZQoaAZoCWgPQwiYa9ECtK3Ov5SGlFKUaBVLMmgWR0CkK5RplBhQdX2UKGgGaAloD0MIM8AF2bL84L+UhpRSlGgVSzJoFkdApCtZx1gYxnV9lChoBmgJaA9DCKuVCb/Uz9S/lIaUUpRoFUsyaBZHQKQrH3PAwf11fZQoaAZoCWgPQwh2xCEbSBfkv5SGlFKUaBVLMmgWR0CkLOqY7aIvdX2UKGgGaAloD0MIesTouYWu1L+UhpRSlGgVSzJoFkdApCysdvKlpHV9lChoBmgJaA9DCEIJM23/ytS/lIaUUpRoFUsyaBZHQKQscd0aIep1fZQoaAZoCWgPQwiazHhb6bXbv5SGlFKUaBVLMmgWR0CkLDemm+CcdX2UKGgGaAloD0MIlnfVA+Yh1b+UhpRSlGgVSzJoFkdApC38cIZ62XV9lChoBmgJaA9DCJlJ1As+zd+/lIaUUpRoFUsyaBZHQKQtvlJYkmh1fZQoaAZoCWgPQwiYvtcQHJfFv5SGlFKUaBVLMmgWR0CkLYOu7pV0dX2UKGgGaAloD0MIXtpwWBr42b+UhpRSlGgVSzJoFkdApC1JeNT99HV9lChoBmgJaA9DCJtY4Cu69dG/lIaUUpRoFUsyaBZHQKQvG4tHxz91fZQoaAZoCWgPQwiSkbOwpx3Tv5SGlFKUaBVLMmgWR0CkLt1ktmL+dX2UKGgGaAloD0MIKbFre7sl17+UhpRSlGgVSzJoFkdApC6i1NQCS3V9lChoBmgJaA9DCPhwyXGndNm/lIaUUpRoFUsyaBZHQKQuaKTB68h1fZQoaAZoCWgPQwgpQBTMmILSv5SGlFKUaBVLMmgWR0CkMCsTN+spdX2UKGgGaAloD0MIV5i+1xAc0L+UhpRSlGgVSzJoFkdApC/s4cWCVnV9lChoBmgJaA9DCFd3LLZJRcW/lIaUUpRoFUsyaBZHQKQvskadc0N1fZQoaAZoCWgPQwjzPLg7a7fYv5SGlFKUaBVLMmgWR0CkL3hE8aGYdX2UKGgGaAloD0MIoS+9/blozr+UhpRSlGgVSzJoFkdApDFIP5HmR3V9lChoBmgJaA9DCASsVbsmpNO/lIaUUpRoFUsyaBZHQKQxCgam4y51fZQoaAZoCWgPQwh8nGnC9pPBv5SGlFKUaBVLMmgWR0CkMM9onKGMdX2UKGgGaAloD0MIozodyHpqyb+UhpRSlGgVSzJoFkdApDCVJcxCY3V9lChoBmgJaA9DCF7acFgaeOO/lIaUUpRoFUsyaBZHQKQyW7sfJV91fZQoaAZoCWgPQwhm22lrRDDGv5SGlFKUaBVLMmgWR0CkMh2IXTEzdX2UKGgGaAloD0MIXaRQFr6+tr+UhpRSlGgVSzJoFkdApDHizu4PPXV9lChoBmgJaA9DCOtySkBMwt2/lIaUUpRoFUsyaBZHQKQxqIhQm/p1fZQoaAZoCWgPQwiVSQ1tADbCv5SGlFKUaBVLMmgWR0CkM3Z+x4Y8dX2UKGgGaAloD0MIWWsotRfRyr+UhpRSlGgVSzJoFkdApDM4Y77sOXV9lChoBmgJaA9DCJFj6xnCMcW/lIaUUpRoFUsyaBZHQKQy/b6guh91fZQoaAZoCWgPQwhQ/YNIhpzjv5SGlFKUaBVLMmgWR0CkMsN+TeO5dX2UKGgGaAloD0MI529CIQIO2b+UhpRSlGgVSzJoFkdApDSDurp7kXV9lChoBmgJaA9DCH9Ma9PYXsu/lIaUUpRoFUsyaBZHQKQ0RZeRgZ11fZQoaAZoCWgPQwioGyjwTj7Pv5SGlFKUaBVLMmgWR0CkNAsBZIQOdX2UKGgGaAloD0MIchjMXyFz37+UhpRSlGgVSzJoFkdApDPQtDlYEHV9lChoBmgJaA9DCMb4MHvZ9uC/lIaUUpRoFUsyaBZHQKQ1oZ9/jKh1fZQoaAZoCWgPQwhH6GfqdQvrv5SGlFKUaBVLMmgWR0CkNWOv2Xb/dX2UKGgGaAloD0MI3soSnWUWw7+UhpRSlGgVSzJoFkdApDUpGH58B3V9lChoBmgJaA9DCFmis8wiFNG/lIaUUpRoFUsyaBZHQKQ07we/5+J1fZQoaAZoCWgPQwjrUiP0M3Xhv5SGlFKUaBVLMmgWR0CkNrG4y44IdX2UKGgGaAloD0MIqKYk63B00b+UhpRSlGgVSzJoFkdApDZzjFQ2uXV9lChoBmgJaA9DCEFK7NrebuS/lIaUUpRoFUsyaBZHQKQ2OPp6hQF1fZQoaAZoCWgPQwiDFadaC7PIv5SGlFKUaBVLMmgWR0CkNf7WmP5pdX2UKGgGaAloD0MIaHdIMUCi17+UhpRSlGgVSzJoFkdApDfP3rUsnXV9lChoBmgJaA9DCLYvoBfuXMa/lIaUUpRoFUsyaBZHQKQ3keHSF491fZQoaAZoCWgPQwjct1onLsfiv5SGlFKUaBVLMmgWR0CkN1diUgSwdX2UKGgGaAloD0MIPnrDfeTW1b+UhpRSlGgVSzJoFkdApDcdL39JjHV9lChoBmgJaA9DCN4f71UrE9e/lIaUUpRoFUsyaBZHQKQ47owEhaF1fZQoaAZoCWgPQwhio6zfTEzav5SGlFKUaBVLMmgWR0CkOLBmoR7JdX2UKGgGaAloD0MIHnBdMSO8ub+UhpRSlGgVSzJoFkdApDh15Qgs9XV9lChoBmgJaA9DCLB0PjxLEOm/lIaUUpRoFUsyaBZHQKQ4O63AmAt1fZQoaAZoCWgPQwhHBOPg0jHbv5SGlFKUaBVLMmgWR0CkOhbD2rXEdX2UKGgGaAloD0MIGt8Xl6o04b+UhpRSlGgVSzJoFkdApDnYod+5OXV9lChoBmgJaA9DCK+T+rK00+W/lIaUUpRoFUsyaBZHQKQ5nc9GI9F1fZQoaAZoCWgPQwgJFoczv5rUv5SGlFKUaBVLMmgWR0CkOWOdoWYXdX2UKGgGaAloD0MI91YkJqjh5L+UhpRSlGgVSzJoFkdApDszoQnQY3V9lChoBmgJaA9DCBrh7UEIyMe/lIaUUpRoFUsyaBZHQKQ69WsA/9p1fZQoaAZoCWgPQwilLhnHSHbjv5SGlFKUaBVLMmgWR0CkOrrP+n63dX2UKGgGaAloD0MIMJsAw/Ln37+UhpRSlGgVSzJoFkdApDqAs3AEdXV9lChoBmgJaA9DCBAHCVG+oNO/lIaUUpRoFUsyaBZHQKQ8RC66J691fZQoaAZoCWgPQwhQqRJlbynQv5SGlFKUaBVLMmgWR0CkPAYe9zwMdX2UKGgGaAloD0MI8x/Sb18Hzr+UhpRSlGgVSzJoFkdApDvLtG/etXV9lChoBmgJaA9DCGKDhZM0f92/lIaUUpRoFUsyaBZHQKQ7kaXKKYR1fZQoaAZoCWgPQwhY5NcPscHUv5SGlFKUaBVLMmgWR0CkPY3OObRXdX2UKGgGaAloD0MIK78MxohE3r+UhpRSlGgVSzJoFkdApD1PwNLDh3V9lChoBmgJaA9DCOFiRQ2mYeK/lIaUUpRoFUsyaBZHQKQ9FevZAY51fZQoaAZoCWgPQwjH9lrQe2Pev5SGlFKUaBVLMmgWR0CkPNupjtojdX2UKGgGaAloD0MIDqK1os1x0L+UhpRSlGgVSzJoFkdApD6jcRDkVHV9lChoBmgJaA9DCIy8rIkFvsS/lIaUUpRoFUsyaBZHQKQ+ZSpBHCp1fZQoaAZoCWgPQwjBcK5hhsbLv5SGlFKUaBVLMmgWR0CkPiqcEvCedX2UKGgGaAloD0MI+aOoM/eQ0r+UhpRSlGgVSzJoFkdApD3wTGo73nV9lChoBmgJaA9DCMX+snvysMi/lIaUUpRoFUsyaBZHQKQ/xDw6QvJ1fZQoaAZoCWgPQwiGcqJdhZTXv5SGlFKUaBVLMmgWR0CkP4Yc3l0YdX2UKGgGaAloD0MIzsMJTKd1z7+UhpRSlGgVSzJoFkdApD9LYukDZHV9lChoBmgJaA9DCFa45SMp6dK/lIaUUpRoFUsyaBZHQKQ/ES+QEIR1fZQoaAZoCWgPQwiFsYUgByXIv5SGlFKUaBVLMmgWR0CkQQNWdVebdX2UKGgGaAloD0MIxqhr7X2q4L+UhpRSlGgVSzJoFkdApEDF0T101nV9lChoBmgJaA9DCG2Oc5twr9O/lIaUUpRoFUsyaBZHQKRAizJp35h1fZQoaAZoCWgPQwhDc51GWqrjv5SGlFKUaBVLMmgWR0CkQFD4gzP9dX2UKGgGaAloD0MIOLwgIjXtzr+UhpRSlGgVSzJoFkdApEIcfcN6PnV9lChoBmgJaA9DCI8dVOI6xsG/lIaUUpRoFUsyaBZHQKRB3mKZUkx1fZQoaAZoCWgPQwjKT6p9Oh7Wv5SGlFKUaBVLMmgWR0CkQaPCdjG2dX2UKGgGaAloD0MIQuvhy0QRzL+UhpRSlGgVSzJoFkdApEFpcZ9/jXV9lChoBmgJaA9DCK2+uipQi+K/lIaUUpRoFUsyaBZHQKRDNCSidrh1fZQoaAZoCWgPQwjtDikGSDTgv5SGlFKUaBVLMmgWR0CkQvXhwVCYdX2UKGgGaAloD0MI0GT/PA0Y3b+UhpRSlGgVSzJoFkdApEK7QZ4wAXV9lChoBmgJaA9DCHcVUn5S7di/lIaUUpRoFUsyaBZHQKRCgSHM2WJ1ZS4="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
|
|
85 |
},
|
86 |
"_n_updates": 50000,
|
87 |
"n_steps": 5,
|
88 |
+
"gamma": 0.96,
|
89 |
"gae_lambda": 1.0,
|
90 |
"ent_coef": 0.0,
|
91 |
"vf_coef": 0.5,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4aa9c74239564e2926b37bc1488475e4f93b513e75b6fa174850780bf229d811
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ab0c86e156f6534d929a67bc4b4ac0ccef48733a5251e5b5a95bd6e0c0311d7
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f94464da790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f94464db2a0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675418729973333922, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAcmjRPs5WHL26bQ8/cmjRPs5WHL26bQ8/cmjRPs5WHL26bQ8/cmjRPs5WHL26bQ8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAavBiv+0C0j/IV8k+CWifv0Qrk79rBcm/a3qVvzbMhj/aNJw/3y2TP/N27b5Nkw0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAByaNE+zlYcvbptDz9CT0Q88iubu4xmVDxyaNE+zlYcvbptDz9CT0Q88iubu4xmVDxyaNE+zlYcvbptDz9CT0Q88iubu4xmVDxyaNE+zlYcvbptDz9CT0Q88iubu4xmVDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.40899998 -0.03816872 0.56026804]\n [ 0.40899998 -0.03816872 0.56026804]\n [ 0.40899998 -0.03816872 0.56026804]\n [ 0.40899998 -0.03816872 0.56026804]]", "desired_goal": "[[-0.8864809 1.6407143 0.39324784]\n [-1.2453624 -1.1497579 -1.5704778 ]\n [-1.1677984 1.053107 1.2203629 ]\n [ 1.1498374 -0.46379814 0.13825722]]", "observation": "[[ 0.40899998 -0.03816872 0.56026804 0.01198179 -0.00473546 0.0129639 ]\n [ 0.40899998 -0.03816872 0.56026804 0.01198179 -0.00473546 0.0129639 ]\n [ 0.40899998 -0.03816872 0.56026804 0.01198179 -0.00473546 0.0129639 ]\n [ 0.40899998 -0.03816872 0.56026804 0.01198179 -0.00473546 0.0129639 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2uSqvc0xAL5aNYI+n681vSzZDT41qgs+xl0yvI+LST0HBFw+Z2GIPYZXXD2+4L49lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.08344431 -0.12518997 0.2543133 ]\n [-0.04435694 0.13852376 0.13639148]\n [-0.01088662 0.04920536 0.21485911]\n [ 0.06659203 0.05379441 0.0932021 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxm6fVWaKAsCUhpRSlIwBbJRLMowBdJRHQKVp8QdS2ph1fZQoaAZoCWgPQwhI4A8//w0QwJSGlFKUaBVLMmgWR0ClabRk3CKrdX2UKGgGaAloD0MItf0rK02KEcCUhpRSlGgVSzJoFkdApWl4FTvRZ3V9lChoBmgJaA9DCLWn5JzYIwjAlIaUUpRoFUsyaBZHQKVpPEQXhwV1fZQoaAZoCWgPQwjBxYoaTKMEwJSGlFKUaBVLMmgWR0Claxy6tknUdX2UKGgGaAloD0MIZHRAEvZNBMCUhpRSlGgVSzJoFkdApWrgLiMo+nV9lChoBmgJaA9DCCUi/Iug8fi/lIaUUpRoFUsyaBZHQKVqo8Empl11fZQoaAZoCWgPQwiZucDlseYEwJSGlFKUaBVLMmgWR0ClamfbKzRhdX2UKGgGaAloD0MINpVFYReF/L+UhpRSlGgVSzJoFkdApWwxpxm03XV9lChoBmgJaA9DCOp3YWu2UgLAlIaUUpRoFUsyaBZHQKVr9WH1vl51fZQoaAZoCWgPQwiQhlPm5hsKwJSGlFKUaBVLMmgWR0Cla7jxkNF0dX2UKGgGaAloD0MIeA5lqIrpB8CUhpRSlGgVSzJoFkdApWt82vStvHV9lChoBmgJaA9DCEPmyqDagAfAlIaUUpRoFUsyaBZHQKVtUt/4Irx1fZQoaAZoCWgPQwhNS6yMRv4BwJSGlFKUaBVLMmgWR0ClbRZe7cwhdX2UKGgGaAloD0MI8SxBRkClBcCUhpRSlGgVSzJoFkdApWzZ+fAbhnV9lChoBmgJaA9DCAMkmkARi/u/lIaUUpRoFUsyaBZHQKVsng+hXbN1fZQoaAZoCWgPQwjlDMUdbzL7v5SGlFKUaBVLMmgWR0ClbnvZqVQidX2UKGgGaAloD0MIyEJ0CByJBsCUhpRSlGgVSzJoFkdApW4/kvK2a3V9lChoBmgJaA9DCFHbhlEQfAfAlIaUUpRoFUsyaBZHQKVuA1NQCS11fZQoaAZoCWgPQwjmB67yBOIFwJSGlFKUaBVLMmgWR0ClbceBQN1AdX2UKGgGaAloD0MIoRFsXP9OD8CUhpRSlGgVSzJoFkdApW+pO32EkHV9lChoBmgJaA9DCGTJHMu7Kvy/lIaUUpRoFUsyaBZHQKVvbQyAQQN1fZQoaAZoCWgPQwhTILOz6P0HwJSGlFKUaBVLMmgWR0ClbzC+L3sYdX2UKGgGaAloD0MIEjKQZ5fv9b+UhpRSlGgVSzJoFkdApW704JeE7HV9lChoBmgJaA9DCPyLoDGTSAnAlIaUUpRoFUsyaBZHQKVw1lLeyiV1fZQoaAZoCWgPQwjsTneeeO4HwJSGlFKUaBVLMmgWR0ClcJnhjvuxdX2UKGgGaAloD0MIsqGb/YGSBsCUhpRSlGgVSzJoFkdApXBdfReC1HV9lChoBmgJaA9DCBDoTNpUHQXAlIaUUpRoFUsyaBZHQKVwIcQyylh1fZQoaAZoCWgPQwhKz/QSY9kNwJSGlFKUaBVLMmgWR0Clcf/OdGy5dX2UKGgGaAloD0MIRl9BmrHID8CUhpRSlGgVSzJoFkdApXHDfHggo3V9lChoBmgJaA9DCMQJTKd1W/S/lIaUUpRoFUsyaBZHQKVxhySV4X51fZQoaAZoCWgPQwhckZighq8GwJSGlFKUaBVLMmgWR0ClcUtJ4B3idX2UKGgGaAloD0MIHqhTHt3IDMCUhpRSlGgVSzJoFkdApXMjjaPCEnV9lChoBmgJaA9DCGO2ZFWE2wPAlIaUUpRoFUsyaBZHQKVy5zK9wm51fZQoaAZoCWgPQwjNkZVfBiMKwJSGlFKUaBVLMmgWR0ClcqrhisnzdX2UKGgGaAloD0MI+OC1SxuOCMCUhpRSlGgVSzJoFkdApXJvDWK/EnV9lChoBmgJaA9DCBkg0QSKmAbAlIaUUpRoFUsyaBZHQKV0QJMQEp11fZQoaAZoCWgPQwjkoe9uZekKwJSGlFKUaBVLMmgWR0CldAQ5WBBidX2UKGgGaAloD0MIhNkEGJb/AcCUhpRSlGgVSzJoFkdApXPIFkhA4XV9lChoBmgJaA9DCAlOfSB5BxLAlIaUUpRoFUsyaBZHQKVzi+ueSSx1fZQoaAZoCWgPQwgvwakPJC8HwJSGlFKUaBVLMmgWR0CldWB60IC2dX2UKGgGaAloD0MIVyHlJ9X+BMCUhpRSlGgVSzJoFkdApXUkEJSiunV9lChoBmgJaA9DCFwAGqVLfwzAlIaUUpRoFUsyaBZHQKV058BMi8p1fZQoaAZoCWgPQwhK1As+zckVwJSGlFKUaBVLMmgWR0CldKvgeii7dX2UKGgGaAloD0MI3dH/ci06A8CUhpRSlGgVSzJoFkdApXaCDAaegHV9lChoBmgJaA9DCJ7TLNDuMAPAlIaUUpRoFUsyaBZHQKV2RapxWDJ1fZQoaAZoCWgPQwh81jVaDnQGwJSGlFKUaBVLMmgWR0CldglB6a9cdX2UKGgGaAloD0MIhIJStHLPDcCUhpRSlGgVSzJoFkdApXXNU0elsXV9lChoBmgJaA9DCCQO2UC6WPe/lIaUUpRoFUsyaBZHQKV3qwqy4Wl1fZQoaAZoCWgPQwhZTGw+ri0UwJSGlFKUaBVLMmgWR0Cld26isXBQdX2UKGgGaAloD0MIOkAwR4+fC8CUhpRSlGgVSzJoFkdApXcyTlkpZ3V9lChoBmgJaA9DCAJ/+PnvQQfAlIaUUpRoFUsyaBZHQKV29lf7aZh1fZQoaAZoCWgPQwhEwvf+Bm3xv5SGlFKUaBVLMmgWR0CleNICU5dXdX2UKGgGaAloD0MIl/26053HBcCUhpRSlGgVSzJoFkdApXiVnyup0nV9lChoBmgJaA9DCP8gkiHHlgfAlIaUUpRoFUsyaBZHQKV4WTM7lq91fZQoaAZoCWgPQwhGe7yQDm8DwJSGlFKUaBVLMmgWR0CleB0p/gBLdX2UKGgGaAloD0MIyqZc4V1u+L+UhpRSlGgVSzJoFkdApXnqqjrRjXV9lChoBmgJaA9DCC16pwLu+QvAlIaUUpRoFUsyaBZHQKV5rjOs1bd1fZQoaAZoCWgPQwjQ8GYN3vcCwJSGlFKUaBVLMmgWR0CleXGza9K3dX2UKGgGaAloD0MIqfsApDZx9b+UhpRSlGgVSzJoFkdApXk1olD4QHV9lChoBmgJaA9DCEhS0sPQavC/lIaUUpRoFUsyaBZHQKV7HKEnLJV1fZQoaAZoCWgPQwhKXp1jQDbyv5SGlFKUaBVLMmgWR0CleuA0TDfndX2UKGgGaAloD0MIEOm3rwMnDsCUhpRSlGgVSzJoFkdApXqjrkbPyHV9lChoBmgJaA9DCDblCu9y0QTAlIaUUpRoFUsyaBZHQKV6Z7hNucd1fZQoaAZoCWgPQwi6Z12j5cD1v5SGlFKUaBVLMmgWR0ClfD5m7J4jdX2UKGgGaAloD0MIVYUGYtkMBMCUhpRSlGgVSzJoFkdApXwB35eqrHV9lChoBmgJaA9DCLA73Xni+QzAlIaUUpRoFUsyaBZHQKV7xZ6lchV1fZQoaAZoCWgPQwjQnPUpx+T/v5SGlFKUaBVLMmgWR0Cle4nHNorXdX2UKGgGaAloD0MIbVfog2VsBsCUhpRSlGgVSzJoFkdApX1lCJGe+XV9lChoBmgJaA9DCD+MEB5tHAPAlIaUUpRoFUsyaBZHQKV9KJ8fFJh1fZQoaAZoCWgPQwiI1/ULdlMQwJSGlFKUaBVLMmgWR0ClfOw/oq0/dX2UKGgGaAloD0MIsaNxqN+FAcCUhpRSlGgVSzJoFkdApXywWtU4rHV9lChoBmgJaA9DCJhRLLe0ug7AlIaUUpRoFUsyaBZHQKV+hDXvphZ1fZQoaAZoCWgPQwiRmnYxzXQLwJSGlFKUaBVLMmgWR0ClfkfY8Md+dX2UKGgGaAloD0MI2uOFdHiI/L+UhpRSlGgVSzJoFkdApX4LX18LKHV9lChoBmgJaA9DCOauJeSD/hLAlIaUUpRoFUsyaBZHQKV9z4HHFP11fZQoaAZoCWgPQwh5lbVN8VgAwJSGlFKUaBVLMmgWR0Clf6hAWznidX2UKGgGaAloD0MIUI2XbhIjA8CUhpRSlGgVSzJoFkdApX9rtVrAQHV9lChoBmgJaA9DCDvFqkGYGwjAlIaUUpRoFUsyaBZHQKV/LzWf9P11fZQoaAZoCWgPQwi6gQLv5HMAwJSGlFKUaBVLMmgWR0ClfvNYKYzBdX2UKGgGaAloD0MIxa2CGOga+7+UhpRSlGgVSzJoFkdApYDcX531SXV9lChoBmgJaA9DCDlHHR1XYwrAlIaUUpRoFUsyaBZHQKWAoBTXJ5p1fZQoaAZoCWgPQwgP0H05sz0KwJSGlFKUaBVLMmgWR0ClgGO/1xsEdX2UKGgGaAloD0MIqfV+ox23BMCUhpRSlGgVSzJoFkdApYAn2IwdsHV9lChoBmgJaA9DCN/i4T0H1v2/lIaUUpRoFUsyaBZHQKWB+RqXWvt1fZQoaAZoCWgPQwhcctwpHWwIwJSGlFKUaBVLMmgWR0ClgbzP0I1MdX2UKGgGaAloD0MInKIjufwH+7+UhpRSlGgVSzJoFkdApYGAXKr7wnV9lChoBmgJaA9DCLRxxFp8SgvAlIaUUpRoFUsyaBZHQKWBRFc6eXl1fZQoaAZoCWgPQwiU+rK0U7P+v5SGlFKUaBVLMmgWR0ClgyQnpjc3dX2UKGgGaAloD0MIvTYbKzG/EMCUhpRSlGgVSzJoFkdApYLnvjOs1nV9lChoBmgJaA9DCBK9jGK55QzAlIaUUpRoFUsyaBZHQKWCqzsQd0d1fZQoaAZoCWgPQwhdGr/wSmIRwJSGlFKUaBVLMmgWR0Clgm9Tgl4UdX2UKGgGaAloD0MIOrAcIQO5CMCUhpRSlGgVSzJoFkdApYRIymALA3V9lChoBmgJaA9DCAVOtoE7EPy/lIaUUpRoFUsyaBZHQKWEDFDv3Jx1fZQoaAZoCWgPQwjYDHBBtuz/v5SGlFKUaBVLMmgWR0Clg8/iYLLIdX2UKGgGaAloD0MIls/yPLh7/r+UhpRSlGgVSzJoFkdApYOT7wazeHV9lChoBmgJaA9DCKAYWTLHsv6/lIaUUpRoFUsyaBZHQKWFfNZ/0/Z1fZQoaAZoCWgPQwhWm/9XHXkHwJSGlFKUaBVLMmgWR0ClhUBpHqeLdX2UKGgGaAloD0MIcaq1MAstBcCUhpRSlGgVSzJoFkdApYUEDhcZ+HV9lChoBmgJaA9DCADHnj2XyQfAlIaUUpRoFUsyaBZHQKWEyBe5Wil1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6bc1be28b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6bc1be70f0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675426319524337193, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA8/HWPkfKrruwkwo/8/HWPkfKrruwkwo/8/HWPkfKrruwkwo/8/HWPkfKrruwkwo/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAupDGP7SsvD28Z26/h774vS3zKz8WLhI/uGSSvk7hbj+3Jl0/iqwiv5tMKb/HLdq/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADz8dY+R8quu7CTCj+XRK07XqtZu6JkkDzz8dY+R8quu7CTCj+XRK07XqtZu6JkkDzz8dY+R8quu7CTCj+XRK07XqtZu6JkkDzz8dY+R8quu7CTCj+XRK07XqtZu6JkkDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.41981468 -0.00533417 0.54131603]\n [ 0.41981468 -0.00533417 0.54131603]\n [ 0.41981468 -0.00533417 0.54131603]\n [ 0.41981468 -0.00533417 0.54131603]]", "desired_goal": "[[ 1.5512917 0.09212628 -0.93127036]\n [-0.12145715 0.6716793 0.5710157 ]\n [-0.28592467 0.9331254 0.863872 ]\n [-0.63544524 -0.66132516 -1.704522 ]]", "observation": "[[ 0.41981468 -0.00533417 0.54131603 0.00528772 -0.00332137 0.01762611]\n [ 0.41981468 -0.00533417 0.54131603 0.00528772 -0.00332137 0.01762611]\n [ 0.41981468 -0.00533417 0.54131603 0.00528772 -0.00332137 0.01762611]\n [ 0.41981468 -0.00533417 0.54131603 0.00528772 -0.00332137 0.01762611]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyPAxPWtb3z27kJU9X7xgvfnPEj7BmAA+OhsGPhgSAT6mjww9MHQMPmXgXT1Z5qc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.04344252 0.10906108 0.07302996]\n [-0.05486714 0.14337148 0.12558271]\n [ 0.13096324 0.12604558 0.03431668]\n [ 0.13716197 0.05416908 0.08198232]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITYOieQCLyL+UhpRSlIwBbJRLMowBdJRHQKQoi79ycTd1fZQoaAZoCWgPQwhQ3zKny2Lgv5SGlFKUaBVLMmgWR0CkKE1/MGHIdX2UKGgGaAloD0MIMxgjEoWW37+UhpRSlGgVSzJoFkdApCgS15Sm7HV9lChoBmgJaA9DCObLC7CPTuS/lIaUUpRoFUsyaBZHQKQn2Sjgydp1fZQoaAZoCWgPQwg6zQLtDinUv5SGlFKUaBVLMmgWR0CkKaGOuJUHdX2UKGgGaAloD0MI6E6w/zo35b+UhpRSlGgVSzJoFkdApCljTx5LRXV9lChoBmgJaA9DCATo9/2bF9W/lIaUUpRoFUsyaBZHQKQpKKa5PM11fZQoaAZoCWgPQwgC1xUzwtvgv5SGlFKUaBVLMmgWR0CkKO5imVJMdX2UKGgGaAloD0MIb0kO2NXk17+UhpRSlGgVSzJoFkdApCq6Hj6vaHV9lChoBmgJaA9DCNWxSumZ3uS/lIaUUpRoFUsyaBZHQKQqfM+NcW11fZQoaAZoCWgPQwj6Qsh5/5/mv5SGlFKUaBVLMmgWR0CkKkMLORkmdX2UKGgGaAloD0MIr+5YbJOK07+UhpRSlGgVSzJoFkdApCoKJZW7v3V9lChoBmgJaA9DCJ5+UBcplNi/lIaUUpRoFUsyaBZHQKQr0qXnhbZ1fZQoaAZoCWgPQwiYa9ECtK3Ov5SGlFKUaBVLMmgWR0CkK5RplBhQdX2UKGgGaAloD0MIM8AF2bL84L+UhpRSlGgVSzJoFkdApCtZx1gYxnV9lChoBmgJaA9DCKuVCb/Uz9S/lIaUUpRoFUsyaBZHQKQrH3PAwf11fZQoaAZoCWgPQwh2xCEbSBfkv5SGlFKUaBVLMmgWR0CkLOqY7aIvdX2UKGgGaAloD0MIesTouYWu1L+UhpRSlGgVSzJoFkdApCysdvKlpHV9lChoBmgJaA9DCEIJM23/ytS/lIaUUpRoFUsyaBZHQKQscd0aIep1fZQoaAZoCWgPQwiazHhb6bXbv5SGlFKUaBVLMmgWR0CkLDemm+CcdX2UKGgGaAloD0MIlnfVA+Yh1b+UhpRSlGgVSzJoFkdApC38cIZ62XV9lChoBmgJaA9DCJlJ1As+zd+/lIaUUpRoFUsyaBZHQKQtvlJYkmh1fZQoaAZoCWgPQwiYvtcQHJfFv5SGlFKUaBVLMmgWR0CkLYOu7pV0dX2UKGgGaAloD0MIXtpwWBr42b+UhpRSlGgVSzJoFkdApC1JeNT99HV9lChoBmgJaA9DCJtY4Cu69dG/lIaUUpRoFUsyaBZHQKQvG4tHxz91fZQoaAZoCWgPQwiSkbOwpx3Tv5SGlFKUaBVLMmgWR0CkLt1ktmL+dX2UKGgGaAloD0MIKbFre7sl17+UhpRSlGgVSzJoFkdApC6i1NQCS3V9lChoBmgJaA9DCPhwyXGndNm/lIaUUpRoFUsyaBZHQKQuaKTB68h1fZQoaAZoCWgPQwgpQBTMmILSv5SGlFKUaBVLMmgWR0CkMCsTN+spdX2UKGgGaAloD0MIV5i+1xAc0L+UhpRSlGgVSzJoFkdApC/s4cWCVnV9lChoBmgJaA9DCFd3LLZJRcW/lIaUUpRoFUsyaBZHQKQvskadc0N1fZQoaAZoCWgPQwjzPLg7a7fYv5SGlFKUaBVLMmgWR0CkL3hE8aGYdX2UKGgGaAloD0MIoS+9/blozr+UhpRSlGgVSzJoFkdApDFIP5HmR3V9lChoBmgJaA9DCASsVbsmpNO/lIaUUpRoFUsyaBZHQKQxCgam4y51fZQoaAZoCWgPQwh8nGnC9pPBv5SGlFKUaBVLMmgWR0CkMM9onKGMdX2UKGgGaAloD0MIozodyHpqyb+UhpRSlGgVSzJoFkdApDCVJcxCY3V9lChoBmgJaA9DCF7acFgaeOO/lIaUUpRoFUsyaBZHQKQyW7sfJV91fZQoaAZoCWgPQwhm22lrRDDGv5SGlFKUaBVLMmgWR0CkMh2IXTEzdX2UKGgGaAloD0MIXaRQFr6+tr+UhpRSlGgVSzJoFkdApDHizu4PPXV9lChoBmgJaA9DCOtySkBMwt2/lIaUUpRoFUsyaBZHQKQxqIhQm/p1fZQoaAZoCWgPQwiVSQ1tADbCv5SGlFKUaBVLMmgWR0CkM3Z+x4Y8dX2UKGgGaAloD0MIWWsotRfRyr+UhpRSlGgVSzJoFkdApDM4Y77sOXV9lChoBmgJaA9DCJFj6xnCMcW/lIaUUpRoFUsyaBZHQKQy/b6guh91fZQoaAZoCWgPQwhQ/YNIhpzjv5SGlFKUaBVLMmgWR0CkMsN+TeO5dX2UKGgGaAloD0MI529CIQIO2b+UhpRSlGgVSzJoFkdApDSDurp7kXV9lChoBmgJaA9DCH9Ma9PYXsu/lIaUUpRoFUsyaBZHQKQ0RZeRgZ11fZQoaAZoCWgPQwioGyjwTj7Pv5SGlFKUaBVLMmgWR0CkNAsBZIQOdX2UKGgGaAloD0MIchjMXyFz37+UhpRSlGgVSzJoFkdApDPQtDlYEHV9lChoBmgJaA9DCMb4MHvZ9uC/lIaUUpRoFUsyaBZHQKQ1oZ9/jKh1fZQoaAZoCWgPQwhH6GfqdQvrv5SGlFKUaBVLMmgWR0CkNWOv2Xb/dX2UKGgGaAloD0MI3soSnWUWw7+UhpRSlGgVSzJoFkdApDUpGH58B3V9lChoBmgJaA9DCFmis8wiFNG/lIaUUpRoFUsyaBZHQKQ07we/5+J1fZQoaAZoCWgPQwjrUiP0M3Xhv5SGlFKUaBVLMmgWR0CkNrG4y44IdX2UKGgGaAloD0MIqKYk63B00b+UhpRSlGgVSzJoFkdApDZzjFQ2uXV9lChoBmgJaA9DCEFK7NrebuS/lIaUUpRoFUsyaBZHQKQ2OPp6hQF1fZQoaAZoCWgPQwiDFadaC7PIv5SGlFKUaBVLMmgWR0CkNf7WmP5pdX2UKGgGaAloD0MIaHdIMUCi17+UhpRSlGgVSzJoFkdApDfP3rUsnXV9lChoBmgJaA9DCLYvoBfuXMa/lIaUUpRoFUsyaBZHQKQ3keHSF491fZQoaAZoCWgPQwjct1onLsfiv5SGlFKUaBVLMmgWR0CkN1diUgSwdX2UKGgGaAloD0MIPnrDfeTW1b+UhpRSlGgVSzJoFkdApDcdL39JjHV9lChoBmgJaA9DCN4f71UrE9e/lIaUUpRoFUsyaBZHQKQ47owEhaF1fZQoaAZoCWgPQwhio6zfTEzav5SGlFKUaBVLMmgWR0CkOLBmoR7JdX2UKGgGaAloD0MIHnBdMSO8ub+UhpRSlGgVSzJoFkdApDh15Qgs9XV9lChoBmgJaA9DCLB0PjxLEOm/lIaUUpRoFUsyaBZHQKQ4O63AmAt1fZQoaAZoCWgPQwhHBOPg0jHbv5SGlFKUaBVLMmgWR0CkOhbD2rXEdX2UKGgGaAloD0MIGt8Xl6o04b+UhpRSlGgVSzJoFkdApDnYod+5OXV9lChoBmgJaA9DCK+T+rK00+W/lIaUUpRoFUsyaBZHQKQ5nc9GI9F1fZQoaAZoCWgPQwgJFoczv5rUv5SGlFKUaBVLMmgWR0CkOWOdoWYXdX2UKGgGaAloD0MI91YkJqjh5L+UhpRSlGgVSzJoFkdApDszoQnQY3V9lChoBmgJaA9DCBrh7UEIyMe/lIaUUpRoFUsyaBZHQKQ69WsA/9p1fZQoaAZoCWgPQwilLhnHSHbjv5SGlFKUaBVLMmgWR0CkOrrP+n63dX2UKGgGaAloD0MIMJsAw/Ln37+UhpRSlGgVSzJoFkdApDqAs3AEdXV9lChoBmgJaA9DCBAHCVG+oNO/lIaUUpRoFUsyaBZHQKQ8RC66J691fZQoaAZoCWgPQwhQqRJlbynQv5SGlFKUaBVLMmgWR0CkPAYe9zwMdX2UKGgGaAloD0MI8x/Sb18Hzr+UhpRSlGgVSzJoFkdApDvLtG/etXV9lChoBmgJaA9DCGKDhZM0f92/lIaUUpRoFUsyaBZHQKQ7kaXKKYR1fZQoaAZoCWgPQwhY5NcPscHUv5SGlFKUaBVLMmgWR0CkPY3OObRXdX2UKGgGaAloD0MIK78MxohE3r+UhpRSlGgVSzJoFkdApD1PwNLDh3V9lChoBmgJaA9DCOFiRQ2mYeK/lIaUUpRoFUsyaBZHQKQ9FevZAY51fZQoaAZoCWgPQwjH9lrQe2Pev5SGlFKUaBVLMmgWR0CkPNupjtojdX2UKGgGaAloD0MIDqK1os1x0L+UhpRSlGgVSzJoFkdApD6jcRDkVHV9lChoBmgJaA9DCIy8rIkFvsS/lIaUUpRoFUsyaBZHQKQ+ZSpBHCp1fZQoaAZoCWgPQwjBcK5hhsbLv5SGlFKUaBVLMmgWR0CkPiqcEvCedX2UKGgGaAloD0MI+aOoM/eQ0r+UhpRSlGgVSzJoFkdApD3wTGo73nV9lChoBmgJaA9DCMX+snvysMi/lIaUUpRoFUsyaBZHQKQ/xDw6QvJ1fZQoaAZoCWgPQwiGcqJdhZTXv5SGlFKUaBVLMmgWR0CkP4Yc3l0YdX2UKGgGaAloD0MIzsMJTKd1z7+UhpRSlGgVSzJoFkdApD9LYukDZHV9lChoBmgJaA9DCFa45SMp6dK/lIaUUpRoFUsyaBZHQKQ/ES+QEIR1fZQoaAZoCWgPQwiFsYUgByXIv5SGlFKUaBVLMmgWR0CkQQNWdVebdX2UKGgGaAloD0MIxqhr7X2q4L+UhpRSlGgVSzJoFkdApEDF0T101nV9lChoBmgJaA9DCG2Oc5twr9O/lIaUUpRoFUsyaBZHQKRAizJp35h1fZQoaAZoCWgPQwhDc51GWqrjv5SGlFKUaBVLMmgWR0CkQFD4gzP9dX2UKGgGaAloD0MIOLwgIjXtzr+UhpRSlGgVSzJoFkdApEIcfcN6PnV9lChoBmgJaA9DCI8dVOI6xsG/lIaUUpRoFUsyaBZHQKRB3mKZUkx1fZQoaAZoCWgPQwjKT6p9Oh7Wv5SGlFKUaBVLMmgWR0CkQaPCdjG2dX2UKGgGaAloD0MIQuvhy0QRzL+UhpRSlGgVSzJoFkdApEFpcZ9/jXV9lChoBmgJaA9DCK2+uipQi+K/lIaUUpRoFUsyaBZHQKRDNCSidrh1fZQoaAZoCWgPQwjtDikGSDTgv5SGlFKUaBVLMmgWR0CkQvXhwVCYdX2UKGgGaAloD0MI0GT/PA0Y3b+UhpRSlGgVSzJoFkdApEK7QZ4wAXV9lChoBmgJaA9DCHcVUn5S7di/lIaUUpRoFUsyaBZHQKRCgSHM2WJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.96, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.33618767135194505, "std_reward": 0.10139747007047462, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-03T12:57:39.442760"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1cad8c2bda1e2678b4c45f5c3edcf4c596007cf5a250827b6a0ed4fc2f434c33
|
3 |
size 3056
|