---
license: apache-2.0
metrics:
- accuracy
base_model: mistralai/Mistral-7B-Instruct-v0.2
inference: false
license_name: apache-2.0
model-index:
- name: Metis-0.3
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 62.71
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Mihaiii/Metis-0.3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 84.8
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Mihaiii/Metis-0.3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 60.92
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Mihaiii/Metis-0.3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 67.56
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Mihaiii/Metis-0.3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.27
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Mihaiii/Metis-0.3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 39.35
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Mihaiii/Metis-0.3
name: Open LLM Leaderboard
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
An instruct based fine tune of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2).
It works well with long system prompts.
It isn't generic in a sense that it shouldn't be used for story telling, for example, but only for reasoning and text comprehension.
This model is trained on a private dataset. The high GSM8K score is **NOT** because of the MetaMath dataset.
# Prompt Format ([see the guidelines from the base model](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2#instruction-format)):
```
[INST] {system_message} . Say "Acknowledged!" if you understood. [/INST] Acknowledged! [INST] {prompt} [/INST]
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Mihaiii__Metis-0.3)
| Metric |Value|
|---------------------------------|----:|
|Avg. |65.44|
|AI2 Reasoning Challenge (25-Shot)|62.71|
|HellaSwag (10-Shot) |84.80|
|MMLU (5-Shot) |60.92|
|TruthfulQA (0-shot) |67.56|
|Winogrande (5-shot) |77.27|
|GSM8k (5-shot) |39.35|