--- datasets: - ehartford/dolphin - jondurbin/airoboros-2.2.1 - ehartford/dolphin-coder - teknium/openhermes - ise-uiuc/Magicoder-OSS-Instruct-75K - ise-uiuc/Magicoder-Evol-Instruct-110K - LDJnr/Capybara language: - en license: apache-2.0 --- This is pruned down version of [cognitivecomputations/dolphin-2.6-mistral-7b-dpo](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo) from 7.24B params to 5.93B params (~ 82%). # Steps to replicate: Use [laserQlora.ipynb](https://github.com/cognitivecomputations/laserRMT/blob/main/laserQlora.ipynb) from [cognitivecomputations/laserRMT](https://github.com/cognitivecomputations/laserRMT) to determine which layers should be eliminated. Replace `model_name = "mistralai/Mistral-7B-v0.1"` with `model_name = "cognitivecomputations/dolphin-2.6-mistral-7b-dpo"`. I also ran the script only for `self_attn.v_proj` (so change the script to `layer_types=["self_attn.v_proj"]`) Order by snr descending and eliminate top layers using [mergekit](https://github.com/arcee-ai/mergekit). The threshold for elimination is up to you, depeding on how many layers you want removed. I decided to remove 6 layers (indexes: 3, 5, 16, 18, 19, 24 ) Here is the mergekit config: ```yml slices: - sources: - model: "cognitivecomputations/dolphin-2.6-mistral-7b-dpo" layer_range: [0, 3] - sources: - model: "cognitivecomputations/dolphin-2.6-mistral-7b-dpo" layer_range: [4, 5] - sources: - model: "cognitivecomputations/dolphin-2.6-mistral-7b-dpo" layer_range: [6, 16] - sources: - model: "cognitivecomputations/dolphin-2.6-mistral-7b-dpo" layer_range: [17, 18] - sources: - model: "cognitivecomputations/dolphin-2.6-mistral-7b-dpo" layer_range: [20, 24] - sources: - model: "cognitivecomputations/dolphin-2.6-mistral-7b-dpo" layer_range: [25, 32] merge_method: passthrough dtype: bfloat16 ``` The model outputted by mergekit with this configuration is this model (dolphin-2.6-mistral-7b-dpo-5.93B).