Update README.md
Browse files
README.md
CHANGED
@@ -8,6 +8,472 @@ tags:
|
|
8 |
- sentence-similarity
|
9 |
- gte
|
10 |
- mteb
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
# gte-micro-v4
|
13 |
|
|
|
8 |
- sentence-similarity
|
9 |
- gte
|
10 |
- mteb
|
11 |
+
model-index:
|
12 |
+
- name: gte-micro-v4
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
type: Classification
|
16 |
+
dataset:
|
17 |
+
type: mteb/amazon_counterfactual
|
18 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
19 |
+
config: en
|
20 |
+
split: test
|
21 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
22 |
+
metrics:
|
23 |
+
- type: accuracy
|
24 |
+
value: 71.83582089552239
|
25 |
+
- type: ap
|
26 |
+
value: 34.436093320979126
|
27 |
+
- type: f1
|
28 |
+
value: 65.82844954638102
|
29 |
+
- task:
|
30 |
+
type: Classification
|
31 |
+
dataset:
|
32 |
+
type: mteb/amazon_polarity
|
33 |
+
name: MTEB AmazonPolarityClassification
|
34 |
+
config: default
|
35 |
+
split: test
|
36 |
+
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
37 |
+
metrics:
|
38 |
+
- type: accuracy
|
39 |
+
value: 80.03957500000001
|
40 |
+
- type: ap
|
41 |
+
value: 74.4510899901909
|
42 |
+
- type: f1
|
43 |
+
value: 79.98034714963279
|
44 |
+
- task:
|
45 |
+
type: Classification
|
46 |
+
dataset:
|
47 |
+
type: mteb/amazon_reviews_multi
|
48 |
+
name: MTEB AmazonReviewsClassification (en)
|
49 |
+
config: en
|
50 |
+
split: test
|
51 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
52 |
+
metrics:
|
53 |
+
- type: accuracy
|
54 |
+
value: 39.754
|
55 |
+
- type: f1
|
56 |
+
value: 39.423135672769796
|
57 |
+
- task:
|
58 |
+
type: Clustering
|
59 |
+
dataset:
|
60 |
+
type: mteb/arxiv-clustering-p2p
|
61 |
+
name: MTEB ArxivClusteringP2P
|
62 |
+
config: default
|
63 |
+
split: test
|
64 |
+
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
65 |
+
metrics:
|
66 |
+
- type: v_measure
|
67 |
+
value: 42.85928858083004
|
68 |
+
- task:
|
69 |
+
type: Clustering
|
70 |
+
dataset:
|
71 |
+
type: mteb/arxiv-clustering-s2s
|
72 |
+
name: MTEB ArxivClusteringS2S
|
73 |
+
config: default
|
74 |
+
split: test
|
75 |
+
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
76 |
+
metrics:
|
77 |
+
- type: v_measure
|
78 |
+
value: 32.475201371814784
|
79 |
+
- task:
|
80 |
+
type: Reranking
|
81 |
+
dataset:
|
82 |
+
type: mteb/askubuntudupquestions-reranking
|
83 |
+
name: MTEB AskUbuntuDupQuestions
|
84 |
+
config: default
|
85 |
+
split: test
|
86 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
87 |
+
metrics:
|
88 |
+
- type: map
|
89 |
+
value: 58.01141755339977
|
90 |
+
- type: mrr
|
91 |
+
value: 71.70821791320407
|
92 |
+
- task:
|
93 |
+
type: Classification
|
94 |
+
dataset:
|
95 |
+
type: mteb/banking77
|
96 |
+
name: MTEB Banking77Classification
|
97 |
+
config: default
|
98 |
+
split: test
|
99 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
100 |
+
metrics:
|
101 |
+
- type: accuracy
|
102 |
+
value: 80.9220779220779
|
103 |
+
- type: f1
|
104 |
+
value: 80.86851039874094
|
105 |
+
- task:
|
106 |
+
type: Clustering
|
107 |
+
dataset:
|
108 |
+
type: mteb/biorxiv-clustering-p2p
|
109 |
+
name: MTEB BiorxivClusteringP2P
|
110 |
+
config: default
|
111 |
+
split: test
|
112 |
+
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
113 |
+
metrics:
|
114 |
+
- type: v_measure
|
115 |
+
value: 36.82555236565894
|
116 |
+
- task:
|
117 |
+
type: Clustering
|
118 |
+
dataset:
|
119 |
+
type: mteb/biorxiv-clustering-s2s
|
120 |
+
name: MTEB BiorxivClusteringS2S
|
121 |
+
config: default
|
122 |
+
split: test
|
123 |
+
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
124 |
+
metrics:
|
125 |
+
- type: v_measure
|
126 |
+
value: 29.243444611175995
|
127 |
+
- task:
|
128 |
+
type: Classification
|
129 |
+
dataset:
|
130 |
+
type: mteb/emotion
|
131 |
+
name: MTEB EmotionClassification
|
132 |
+
config: default
|
133 |
+
split: test
|
134 |
+
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
135 |
+
metrics:
|
136 |
+
- type: accuracy
|
137 |
+
value: 44.87500000000001
|
138 |
+
- type: f1
|
139 |
+
value: 39.78455417008123
|
140 |
+
- task:
|
141 |
+
type: Classification
|
142 |
+
dataset:
|
143 |
+
type: mteb/imdb
|
144 |
+
name: MTEB ImdbClassification
|
145 |
+
config: default
|
146 |
+
split: test
|
147 |
+
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
148 |
+
metrics:
|
149 |
+
- type: accuracy
|
150 |
+
value: 71.9568
|
151 |
+
- type: ap
|
152 |
+
value: 65.91179027501194
|
153 |
+
- type: f1
|
154 |
+
value: 71.85575290323182
|
155 |
+
- task:
|
156 |
+
type: Classification
|
157 |
+
dataset:
|
158 |
+
type: mteb/mtop_domain
|
159 |
+
name: MTEB MTOPDomainClassification (en)
|
160 |
+
config: en
|
161 |
+
split: test
|
162 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
163 |
+
metrics:
|
164 |
+
- type: accuracy
|
165 |
+
value: 90.87323301413589
|
166 |
+
- type: f1
|
167 |
+
value: 90.45433994230181
|
168 |
+
- task:
|
169 |
+
type: Classification
|
170 |
+
dataset:
|
171 |
+
type: mteb/mtop_intent
|
172 |
+
name: MTEB MTOPIntentClassification (en)
|
173 |
+
config: en
|
174 |
+
split: test
|
175 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
176 |
+
metrics:
|
177 |
+
- type: accuracy
|
178 |
+
value: 68.53169174646602
|
179 |
+
- type: f1
|
180 |
+
value: 50.49367676485481
|
181 |
+
- task:
|
182 |
+
type: Classification
|
183 |
+
dataset:
|
184 |
+
type: mteb/amazon_massive_intent
|
185 |
+
name: MTEB MassiveIntentClassification (en)
|
186 |
+
config: en
|
187 |
+
split: test
|
188 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
189 |
+
metrics:
|
190 |
+
- type: accuracy
|
191 |
+
value: 69.11230665770007
|
192 |
+
- type: f1
|
193 |
+
value: 66.9035022957204
|
194 |
+
- task:
|
195 |
+
type: Classification
|
196 |
+
dataset:
|
197 |
+
type: mteb/amazon_massive_scenario
|
198 |
+
name: MTEB MassiveScenarioClassification (en)
|
199 |
+
config: en
|
200 |
+
split: test
|
201 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
202 |
+
metrics:
|
203 |
+
- type: accuracy
|
204 |
+
value: 74.15601882985877
|
205 |
+
- type: f1
|
206 |
+
value: 74.059011768806
|
207 |
+
- task:
|
208 |
+
type: Clustering
|
209 |
+
dataset:
|
210 |
+
type: mteb/medrxiv-clustering-p2p
|
211 |
+
name: MTEB MedrxivClusteringP2P
|
212 |
+
config: default
|
213 |
+
split: test
|
214 |
+
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
215 |
+
metrics:
|
216 |
+
- type: v_measure
|
217 |
+
value: 32.551619758274406
|
218 |
+
- task:
|
219 |
+
type: Clustering
|
220 |
+
dataset:
|
221 |
+
type: mteb/medrxiv-clustering-s2s
|
222 |
+
name: MTEB MedrxivClusteringS2S
|
223 |
+
config: default
|
224 |
+
split: test
|
225 |
+
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
226 |
+
metrics:
|
227 |
+
- type: v_measure
|
228 |
+
value: 30.80210958999942
|
229 |
+
- task:
|
230 |
+
type: Clustering
|
231 |
+
dataset:
|
232 |
+
type: mteb/reddit-clustering
|
233 |
+
name: MTEB RedditClustering
|
234 |
+
config: default
|
235 |
+
split: test
|
236 |
+
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
237 |
+
metrics:
|
238 |
+
- type: v_measure
|
239 |
+
value: 48.27542501963987
|
240 |
+
- task:
|
241 |
+
type: Clustering
|
242 |
+
dataset:
|
243 |
+
type: mteb/reddit-clustering-p2p
|
244 |
+
name: MTEB RedditClusteringP2P
|
245 |
+
config: default
|
246 |
+
split: test
|
247 |
+
revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
|
248 |
+
metrics:
|
249 |
+
- type: v_measure
|
250 |
+
value: 53.55942763860501
|
251 |
+
- task:
|
252 |
+
type: PairClassification
|
253 |
+
dataset:
|
254 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
255 |
+
name: MTEB SprintDuplicateQuestions
|
256 |
+
config: default
|
257 |
+
split: test
|
258 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
259 |
+
metrics:
|
260 |
+
- type: cos_sim_accuracy
|
261 |
+
value: 99.82673267326733
|
262 |
+
- type: cos_sim_ap
|
263 |
+
value: 95.53621808930455
|
264 |
+
- type: cos_sim_f1
|
265 |
+
value: 91.19275289380975
|
266 |
+
- type: cos_sim_precision
|
267 |
+
value: 91.7933130699088
|
268 |
+
- type: cos_sim_recall
|
269 |
+
value: 90.60000000000001
|
270 |
+
- type: dot_accuracy
|
271 |
+
value: 99.75445544554455
|
272 |
+
- type: dot_ap
|
273 |
+
value: 92.76410342229411
|
274 |
+
- type: dot_f1
|
275 |
+
value: 87.50612444879961
|
276 |
+
- type: dot_precision
|
277 |
+
value: 85.78290105667628
|
278 |
+
- type: dot_recall
|
279 |
+
value: 89.3
|
280 |
+
- type: euclidean_accuracy
|
281 |
+
value: 99.82673267326733
|
282 |
+
- type: euclidean_ap
|
283 |
+
value: 95.46124795179632
|
284 |
+
- type: euclidean_f1
|
285 |
+
value: 91.01181304571135
|
286 |
+
- type: euclidean_precision
|
287 |
+
value: 93.55860612460401
|
288 |
+
- type: euclidean_recall
|
289 |
+
value: 88.6
|
290 |
+
- type: manhattan_accuracy
|
291 |
+
value: 99.82871287128712
|
292 |
+
- type: manhattan_ap
|
293 |
+
value: 95.51436288466519
|
294 |
+
- type: manhattan_f1
|
295 |
+
value: 91.11891620672353
|
296 |
+
- type: manhattan_precision
|
297 |
+
value: 91.44008056394763
|
298 |
+
- type: manhattan_recall
|
299 |
+
value: 90.8
|
300 |
+
- type: max_accuracy
|
301 |
+
value: 99.82871287128712
|
302 |
+
- type: max_ap
|
303 |
+
value: 95.53621808930455
|
304 |
+
- type: max_f1
|
305 |
+
value: 91.19275289380975
|
306 |
+
- task:
|
307 |
+
type: Clustering
|
308 |
+
dataset:
|
309 |
+
type: mteb/stackexchange-clustering
|
310 |
+
name: MTEB StackExchangeClustering
|
311 |
+
config: default
|
312 |
+
split: test
|
313 |
+
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
314 |
+
metrics:
|
315 |
+
- type: v_measure
|
316 |
+
value: 55.0721745308552
|
317 |
+
- task:
|
318 |
+
type: Clustering
|
319 |
+
dataset:
|
320 |
+
type: mteb/stackexchange-clustering-p2p
|
321 |
+
name: MTEB StackExchangeClusteringP2P
|
322 |
+
config: default
|
323 |
+
split: test
|
324 |
+
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
325 |
+
metrics:
|
326 |
+
- type: v_measure
|
327 |
+
value: 31.91639764792279
|
328 |
+
- task:
|
329 |
+
type: Classification
|
330 |
+
dataset:
|
331 |
+
type: mteb/toxic_conversations_50k
|
332 |
+
name: MTEB ToxicConversationsClassification
|
333 |
+
config: default
|
334 |
+
split: test
|
335 |
+
revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
|
336 |
+
metrics:
|
337 |
+
- type: accuracy
|
338 |
+
value: 66.0402
|
339 |
+
- type: ap
|
340 |
+
value: 12.106715125588833
|
341 |
+
- type: f1
|
342 |
+
value: 50.67443088623853
|
343 |
+
- task:
|
344 |
+
type: Classification
|
345 |
+
dataset:
|
346 |
+
type: mteb/tweet_sentiment_extraction
|
347 |
+
name: MTEB TweetSentimentExtractionClassification
|
348 |
+
config: default
|
349 |
+
split: test
|
350 |
+
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
351 |
+
metrics:
|
352 |
+
- type: accuracy
|
353 |
+
value: 59.42840973401245
|
354 |
+
- type: f1
|
355 |
+
value: 59.813350770208665
|
356 |
+
- task:
|
357 |
+
type: Clustering
|
358 |
+
dataset:
|
359 |
+
type: mteb/twentynewsgroups-clustering
|
360 |
+
name: MTEB TwentyNewsgroupsClustering
|
361 |
+
config: default
|
362 |
+
split: test
|
363 |
+
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
364 |
+
metrics:
|
365 |
+
- type: v_measure
|
366 |
+
value: 41.37273187829312
|
367 |
+
- task:
|
368 |
+
type: PairClassification
|
369 |
+
dataset:
|
370 |
+
type: mteb/twittersemeval2015-pairclassification
|
371 |
+
name: MTEB TwitterSemEval2015
|
372 |
+
config: default
|
373 |
+
split: test
|
374 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
375 |
+
metrics:
|
376 |
+
- type: cos_sim_accuracy
|
377 |
+
value: 84.10919711509806
|
378 |
+
- type: cos_sim_ap
|
379 |
+
value: 67.55255054010537
|
380 |
+
- type: cos_sim_f1
|
381 |
+
value: 64.22774378823823
|
382 |
+
- type: cos_sim_precision
|
383 |
+
value: 60.9623133443944
|
384 |
+
- type: cos_sim_recall
|
385 |
+
value: 67.86279683377309
|
386 |
+
- type: dot_accuracy
|
387 |
+
value: 80.62228050306967
|
388 |
+
- type: dot_ap
|
389 |
+
value: 54.81480289413879
|
390 |
+
- type: dot_f1
|
391 |
+
value: 54.22550997534184
|
392 |
+
- type: dot_precision
|
393 |
+
value: 47.13561964146532
|
394 |
+
- type: dot_recall
|
395 |
+
value: 63.82585751978892
|
396 |
+
- type: euclidean_accuracy
|
397 |
+
value: 84.04363116170948
|
398 |
+
- type: euclidean_ap
|
399 |
+
value: 67.77652401372912
|
400 |
+
- type: euclidean_f1
|
401 |
+
value: 64.46694460988684
|
402 |
+
- type: euclidean_precision
|
403 |
+
value: 58.762214983713356
|
404 |
+
- type: euclidean_recall
|
405 |
+
value: 71.39841688654354
|
406 |
+
- type: manhattan_accuracy
|
407 |
+
value: 83.94230196101806
|
408 |
+
- type: manhattan_ap
|
409 |
+
value: 67.419155052755
|
410 |
+
- type: manhattan_f1
|
411 |
+
value: 64.15049692380501
|
412 |
+
- type: manhattan_precision
|
413 |
+
value: 58.151008151008156
|
414 |
+
- type: manhattan_recall
|
415 |
+
value: 71.53034300791556
|
416 |
+
- type: max_accuracy
|
417 |
+
value: 84.10919711509806
|
418 |
+
- type: max_ap
|
419 |
+
value: 67.77652401372912
|
420 |
+
- type: max_f1
|
421 |
+
value: 64.46694460988684
|
422 |
+
- task:
|
423 |
+
type: PairClassification
|
424 |
+
dataset:
|
425 |
+
type: mteb/twitterurlcorpus-pairclassification
|
426 |
+
name: MTEB TwitterURLCorpus
|
427 |
+
config: default
|
428 |
+
split: test
|
429 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
430 |
+
metrics:
|
431 |
+
- type: cos_sim_accuracy
|
432 |
+
value: 88.25823728024217
|
433 |
+
- type: cos_sim_ap
|
434 |
+
value: 84.67785320317506
|
435 |
+
- type: cos_sim_f1
|
436 |
+
value: 76.67701296330108
|
437 |
+
- type: cos_sim_precision
|
438 |
+
value: 72.92491491282907
|
439 |
+
- type: cos_sim_recall
|
440 |
+
value: 80.83615645210965
|
441 |
+
- type: dot_accuracy
|
442 |
+
value: 84.63344588038964
|
443 |
+
- type: dot_ap
|
444 |
+
value: 75.25182203961072
|
445 |
+
- type: dot_f1
|
446 |
+
value: 70.35217601881962
|
447 |
+
- type: dot_precision
|
448 |
+
value: 63.87737152908657
|
449 |
+
- type: dot_recall
|
450 |
+
value: 78.28765013858947
|
451 |
+
- type: euclidean_accuracy
|
452 |
+
value: 88.2504754142896
|
453 |
+
- type: euclidean_ap
|
454 |
+
value: 84.68882859374924
|
455 |
+
- type: euclidean_f1
|
456 |
+
value: 76.69534508021188
|
457 |
+
- type: euclidean_precision
|
458 |
+
value: 74.89177489177489
|
459 |
+
- type: euclidean_recall
|
460 |
+
value: 78.58792731752386
|
461 |
+
- type: manhattan_accuracy
|
462 |
+
value: 88.26211821321846
|
463 |
+
- type: manhattan_ap
|
464 |
+
value: 84.60061548046698
|
465 |
+
- type: manhattan_f1
|
466 |
+
value: 76.63928519959647
|
467 |
+
- type: manhattan_precision
|
468 |
+
value: 72.02058504875406
|
469 |
+
- type: manhattan_recall
|
470 |
+
value: 81.89097628580228
|
471 |
+
- type: max_accuracy
|
472 |
+
value: 88.26211821321846
|
473 |
+
- type: max_ap
|
474 |
+
value: 84.68882859374924
|
475 |
+
- type: max_f1
|
476 |
+
value: 76.69534508021188
|
477 |
---
|
478 |
# gte-micro-v4
|
479 |
|