--- base_model: google/pegasus-large tags: - generated_from_trainer datasets: - eur-lex-sum model-index: - name: Pegasus_no_extraction_V1 results: [] --- # Pegasus_no_extraction_V1 This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on the eur-lex-sum dataset. It achieves the following results on the evaluation set: - Loss: 2.1652 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 5.0055 | 0.9927 | 68 | 3.8532 | | 3.5972 | 2.0 | 137 | 3.1452 | | 3.0381 | 2.9927 | 205 | 2.6382 | | 2.6047 | 4.0 | 274 | 2.4301 | | 2.4507 | 4.9927 | 342 | 2.3523 | | 2.3115 | 6.0 | 411 | 2.3044 | | 2.2714 | 6.9927 | 479 | 2.2742 | | 2.1854 | 8.0 | 548 | 2.2519 | | 2.1754 | 8.9927 | 616 | 2.2373 | | 2.1119 | 10.0 | 685 | 2.2238 | | 2.114 | 10.9927 | 753 | 2.2155 | | 2.0527 | 12.0 | 822 | 2.2069 | | 2.0622 | 12.9927 | 890 | 2.2004 | | 2.0085 | 14.0 | 959 | 2.1929 | | 2.0133 | 14.9927 | 1027 | 2.1902 | | 1.9695 | 16.0 | 1096 | 2.1857 | | 1.9827 | 16.9927 | 1164 | 2.1826 | | 1.9389 | 18.0 | 1233 | 2.1789 | | 1.9541 | 18.9927 | 1301 | 2.1758 | | 1.9105 | 20.0 | 1370 | 2.1749 | | 1.9244 | 20.9927 | 1438 | 2.1731 | | 1.8858 | 22.0 | 1507 | 2.1716 | | 1.9028 | 22.9927 | 1575 | 2.1712 | | 1.8625 | 24.0 | 1644 | 2.1698 | | 1.8798 | 24.9927 | 1712 | 2.1695 | | 1.847 | 26.0 | 1781 | 2.1678 | | 1.8648 | 26.9927 | 1849 | 2.1698 | | 1.8283 | 28.0 | 1918 | 2.1671 | | 1.8517 | 28.9927 | 1986 | 2.1656 | | 1.8166 | 30.0 | 2055 | 2.1658 | | 1.8391 | 30.9927 | 2123 | 2.1646 | | 1.8068 | 32.0 | 2192 | 2.1670 | | 1.8307 | 32.9927 | 2260 | 2.1654 | | 1.7956 | 34.0 | 2329 | 2.1656 | | 1.8219 | 34.9927 | 2397 | 2.1647 | | 1.7936 | 36.0 | 2466 | 2.1652 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.17.1 - Tokenizers 0.19.1