--- license: mit base_model: indobenchmark/indobart-v2 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: bdc2024-indobert-1 results: [] --- # bdc2024-indobert-1 This model is a fine-tuned version of [indobenchmark/indobart-v2](https://huggingface.co/indobenchmark/indobart-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4102 - Accuracy: 0.9273 - Balanced Accuracy: 0.8413 - Precision: 0.9275 - Recall: 0.9273 - F1: 0.9216 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Balanced Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------------:|:---------:|:------:|:------:| | No log | 1.0 | 483 | 0.7392 | 0.7686 | 0.4854 | 0.7372 | 0.7686 | 0.7356 | | 0.7636 | 2.0 | 966 | 0.5057 | 0.8547 | 0.6601 | 0.8589 | 0.8547 | 0.8347 | | 0.4764 | 3.0 | 1449 | 0.4090 | 0.9120 | 0.7949 | 0.9156 | 0.9120 | 0.9035 | | 0.27 | 4.0 | 1932 | 0.4089 | 0.9273 | 0.8411 | 0.9273 | 0.9273 | 0.9221 | | 0.1442 | 5.0 | 2415 | 0.4102 | 0.9273 | 0.8413 | 0.9275 | 0.9273 | 0.9216 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.13.3