gpt2-large-lora-sft / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
d1b096e
|
raw
history blame
1.83 kB
metadata
license: mit
base_model: gpt2-large
tags:
  - generated_from_trainer
datasets:
  - customized
model-index:
  - name: gpt2-large-lora-sft
    results: []

gpt2-large-lora-sft

This model is a fine-tuned version of gpt2-large on the customized dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00013
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 6
  • total_train_batch_size: 6
  • total_eval_batch_size: 48
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2.5

Training results

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.1+cu117
  • Datasets 2.10.1
  • Tokenizers 0.13.3

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 28.05
ARC (25-shot) 26.79
HellaSwag (10-shot) 44.15
MMLU (5-shot) 25.82
TruthfulQA (0-shot) 39.06
Winogrande (5-shot) 55.09
GSM8K (5-shot) 0.0
DROP (3-shot) 5.46