--- tags: biobert language: unk widget: - text: "Cell lines expressing proteins 🤗" datasets: - Mim/autotrain-data-biobert-procell co2_eq_emissions: 0.5988414315305852 --- # Model Trained Using biobert - Problem type: Binary Classification - Model ID: 896229149 - CO2 Emissions (in grams): 0.5988414315305852 ## Validation Metrics - Loss: 0.4045306444168091 - Accuracy: 0.8028169014084507 - Precision: 0.8070175438596491 - Recall: 0.9387755102040817 - AUC: 0.8812615955473099 - F1: 0.8679245283018868 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "Cell lines expressing proteins"}' https://api-inference.huggingface.co/models/Mim/autotrain-biobert-procell-896229149 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Mim/autotrain-biobert-procell-896229149", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Mim/autotrain-biobert-procell-896229149", use_auth_token=True) inputs = tokenizer("Cell lines expressing proteins", return_tensors="pt") outputs = model(**inputs) ```