--- license: apache-2.0 base_model: Minbyul/mistral-7b-wo-kqa_silver_wogold-sft tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: mistral-7b-dpo-full-sft-wo-kqa_silver_wogold results: [] --- # mistral-7b-dpo-full-sft-wo-kqa_silver_wogold This model is a fine-tuned version of [Minbyul/mistral-7b-wo-kqa_silver_wogold-sft](https://huggingface.co/Minbyul/mistral-7b-wo-kqa_silver_wogold-sft) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 0.0530 - Rewards/chosen: -2.4760 - Rewards/rejected: -21.0723 - Rewards/accuracies: 0.9700 - Rewards/margins: 18.5963 - Logps/rejected: -2709.2131 - Logps/chosen: -407.7003 - Logits/rejected: -2.0225 - Logits/chosen: -2.2276 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.2735 | 0.32 | 100 | 0.0529 | -1.3592 | -8.1857 | 0.9700 | 6.8265 | -1420.5509 | -296.0260 | -2.7457 | -2.5375 | | 0.1321 | 0.63 | 200 | 0.0507 | -2.0405 | -16.8511 | 0.9600 | 14.8106 | -2287.0967 | -364.1557 | -2.2518 | -2.3349 | | 0.117 | 0.95 | 300 | 0.0531 | -2.4855 | -21.1345 | 0.9700 | 18.6490 | -2715.4331 | -408.6504 | -2.0210 | -2.2273 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.1.2 - Datasets 2.14.6 - Tokenizers 0.15.2