Mit1208 commited on
Commit
e36db31
·
verified ·
1 Parent(s): 1f3767f

End of training

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - precision
6
+ - recall
7
+ - f1
8
+ - accuracy
9
+ model-index:
10
+ - name: UDOP-finetuned-DocLayNet-3
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # UDOP-finetuned-DocLayNet-3
18
+
19
+ This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 1.0136
22
+ - Precision: 0.6020
23
+ - Recall: 0.5497
24
+ - F1: 0.5747
25
+ - Accuracy: 0.7782
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 3e-05
45
+ - train_batch_size: 8
46
+ - eval_batch_size: 8
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - lr_scheduler_warmup_ratio: 0.1
51
+ - training_steps: 1500
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 1.0703 | 5.81 | 500 | 0.7495 | 0.6946 | 0.7581 | 0.7249 | 0.8152 |
58
+ | 0.2524 | 11.63 | 1000 | 0.8365 | 0.6714 | 0.7688 | 0.7168 | 0.7962 |
59
+ | 0.136 | 17.44 | 1500 | 0.7624 | 0.6743 | 0.7903 | 0.7277 | 0.8246 |
60
+
61
+
62
+ ### Framework versions
63
+
64
+ - Transformers 4.39.0.dev0
65
+ - Pytorch 2.1.0+cu121
66
+ - Datasets 2.18.0
67
+ - Tokenizers 0.15.2