--- library_name: peft tags: - generated_from_trainer base_model: microsoft/phi-2 model-index: - name: phi-2-universal-NER results: [] datasets: - Universal-NER/Pile-NER-type language: - en --- # phi-2-universal-NER This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the Universal-NER/Pile-NER-type dataset. ## Model description This model shows power of small language model. We can finetune phi-2 on google colab free version. It's very simple and easy. I couldn't fine tuned whole model on free colab so used PEFT. ## Intended uses & limitations This model is fine tuned from Phi-2 and UniversalNER dataset. Dataset is just for research so this model also just can be used for research purpose. ## Training and evaluation data I have used just 5 epochs in fine tuning. ## Training procedure notebook https://github.com/mit1280/fined-tuning/blob/main/phi_2_fine_tune_using_PEFT%2Binference.ipynb ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 1000 ### Inference Code ```python from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer import torch from transformers import StoppingCriteria config = PeftConfig.from_pretrained("Mit1208/phi-2-universal-NER") base_model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2",device_map="auto", trust_remote_code=True) model = PeftModel.from_pretrained(base_model, "Mit1208/phi-2-universal-NER", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("Mit1208/phi-2-universal-NER", trust_remote_code=True) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") conversations = [ { "from": "human", "value": "Text: Mit Patel here from India"}, {"from": "gpt", "value": "I've read this text."}, {"from":"human", "value":"what is a name of the person in the text?"}] inference_text = tokenizer.apply_chat_template(conversations, tokenize=False) + '<|im_start|>gpt:\n' inputs = tokenizer(inference_text, return_tensors="pt", return_attention_mask=False).to(device) class EosListStoppingCriteria(StoppingCriteria): def __init__(self, eos_sequence = tokenizer.encode("<|im_end|>")): self.eos_sequence = eos_sequence def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: last_ids = input_ids[:,-len(self.eos_sequence):].tolist() return self.eos_sequence in last_ids outputs = model.generate(**inputs, max_length=512, pad_token_id= tokenizer.eos_token_id, stopping_criteria = [EosListStoppingCriteria()]) text = tokenizer.batch_decode(outputs)[0] print(text) # Output ''' <|im_start|>human Text: Mit Patel here from India<|im_end|> <|im_start|>gpt I've read this text.<|im_end|> <|im_start|>human what is a name of the person in the text?<|im_end|> <|im_start|>gpt: ["Mit Patel"]<|im_end|> ''' ``` ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0