Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1876.26 +/- 70.35
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:954e82463184fe17631bd8ceade9d4e2946f0198653c1d70adb57ab4e9eca7cd
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f133daa9d30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f133daa9dc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f133daa9e50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f133daa9ee0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f133daa9f70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f133daac040>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f133daac0d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f133daac160>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f133daac1f0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f133daac280>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f133daac310>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f133daac3a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f133daa3b40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1677406037987170804,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAB3N3b7fAXu/gKlBv/5+Qr+pHI0/jtqUPho0pr4ljEE+N41uvzuy2D0mh2O9LpRMPuVDV7/4dos+VOUCP5xqXr3ehrY/fHyfvlMIjr+/GGI7S9vkvzQH/TtOxYg/LwBcv1kBNj/hVaM+2TM+P86CM7/Ocpg/eKA3v5+qn76BeUs/NukFv1Lukb8/zl2/jcK8vSxzCD/mq7W///dLv/mn/b7bOdi+QhN/vkpEhz29yMi/ZJSUvyhXXT8xDKu+/OHivtGaCj+UvRi+3CStPsmnOz/qCbS/4VWjPo5HrL/OgjO/xu4kPtEQP7+EX7W+owBWPzDXH79r+ok/w0HDvgH2lb6NJS6/B8KbP/FZNj/TVf8+uujkvjtqdD+ktwA/gvzdPE7eMT+ku3S/K+Wwv9U4ALw/nzm/QqrjPlevgT98pUS/WQE2P+FVoz7ZMz4/zoIzv9zoyL73s22/6/Unv4/nlD9LH8m/kP96vwkvYT7FuuS9ZaHGv8FLpzhAKma+jIdHQJUIKL81Fcm+Xw1ZPhdzTkB91dI/Q3tIveFjqL5gvOA96lSEvu9GOMDwr5o/AXcQQOoJtL/hVaM+jkesv1aKtj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA6+zS1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANqALPQAAAADZbOe/AAAAAFqF8L0AAAAAl0LxPwAAAABuc+U9AAAAAN742z8AAAAAkxg2vAAAAABqf+m/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5fu6NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJy4y70AAAAAKxntvwAAAADFkMo9AAAAAERU9D8AAAAABMB4PQAAAABN7ew/AAAAAFmjzDwAAAAAUMjwvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAENWzrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDgB6I8AAAAAHCs5L8AAAAAE06kvQAAAABiyuk/AAAAAEZ8ob0AAAAAc3rqPwAAAAAM+ag9AAAAAF643L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACyyNkzAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFn+ivAAAAAApr9m/AAAAADNuwTsAAAAAMQTnPwAAAABfChm9AAAAAGp72j8AAAAAI/iPvAAAAACIvdu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKG6/9MK1G+MAWyUTegDjAF0lEdAqh6k94eLenV9lChoBkdAoGW5TCLuQmgHTegDaAhHQKofJSXMQmN1fZQoaAZHQKIeUWO6unxoB03oA2gIR0CqJPGrCFbndX2UKGgGR0CiU0L9/BnBaAdN6ANoCEdAqiYFoi9qUXV9lChoBkdAoS+aMcZLqWgHTegDaAhHQKoqa+QEIPd1fZQoaAZHQKFaKYGdI5JoB03oA2gIR0CqKu44p+c6dX2UKGgGR0CgyEGKIi1RaAdN6ANoCEdAqjC8CxNZeXV9lChoBkdAoKXXw9aEBmgHTegDaAhHQKoyDcM3IdV1fZQoaAZHQKAROwwj+rFoB03oA2gIR0CqONs0YTCcdX2UKGgGR0CcTb09QoCuaAdN6ANoCEdAqjmurp7kXHV9lChoBkdAn1maJuVHF2gHTegDaAhHQKpAW1E3Kjl1fZQoaAZHQJyq7Pa+N99oB03oA2gIR0CqQXKZML4OdX2UKGgGR0CfsLIOYplSaAdN6ANoCEdAqkXys+3YtnV9lChoBkdAnFGTBMzuW2gHTegDaAhHQKpGiQ04zad1fZQoaAZHQKBZuxj8UEhoB03oA2gIR0CqTKDDsMRZdX2UKGgGR0Cgn7z8xbjcaAdN6ANoCEdAqk29lCkXUHV9lChoBkdAoZFgsmOU+2gHTegDaAhHQKpTevL5h0B1fZQoaAZHQKD8jXuE25xoB03oA2gIR0CqVEj81n/UdX2UKGgGR0CgrzNdJJ5FaAdN6ANoCEdAqlxOn4wh4nV9lChoBkdAoXdSAavRq2gHTegDaAhHQKpdZ2A5Jbt1fZQoaAZHQKIedVCHARFoB03oA2gIR0CqYelzuF6BdX2UKGgGR0ChFKCW/rSmaAdN6ANoCEdAqmJvyd4FA3V9lChoBkdAoiQ686FM7GgHTegDaAhHQKpoT5ckdFR1fZQoaAZHQKIz+CaJAMVoB03oA2gIR0CqaWI68xsVdX2UKGgGR0Ci4Mgm7aqTaAdN6ANoCEdAqm3BTyauwHV9lChoBkdAooiuajN6gWgHTegDaAhHQKpuadOIqLF1fZQoaAZHQKLdRVEuxr1oB03oA2gIR0Cqd0D3mFJydX2UKGgGR0CiWsMZHd43aAdN6ANoCEdAqni3eP7vX3V9lChoBkdAocEIWgvlEWgHTegDaAhHQKp9OGHHmzV1fZQoaAZHQKELtIRRMvhoB03oA2gIR0Cqfbwo1DSgdX2UKGgGR0CiJPv0Zm7KaAdN6ANoCEdAqoOHX9R77nV9lChoBkdAokWb1K5CnmgHTegDaAhHQKqEl238XN11fZQoaAZHQKF0etFrl/9oB03oA2gIR0CqiRzRQaaTdX2UKGgGR0ChiyifYjB3aAdN6ANoCEdAqompA4XGfnV9lChoBkdAoKgx31SOzmgHTegDaAhHQKqRTTnaFmF1fZQoaAZHQKB39ZamoBJoB03oA2gIR0Cqkwi1iONpdX2UKGgGR0CiEBfrjYI0aAdN6ANoCEdAqpjU1VHWjHV9lChoBkdAoYhzdi2Dx2gHTegDaAhHQKqZWKk2xY91fZQoaAZHQKKHQ7OmixpoB03oA2gIR0CqnyC8OCoTdX2UKGgGR0CiJkgHu7YkaAdN6ANoCEdAqqA1YGMXJ3V9lChoBkdAoXLDGrCFbmgHTegDaAhHQKqkq9FnZkF1fZQoaAZHQKK8nXYDklxoB03oA2gIR0CqpStPP9k0dX2UKGgGR0Ci+I7EHdGiaAdN6ANoCEdAqqsevW6K+HV9lChoBkdAoyF3n6l+E2gHTegDaAhHQKqssplz2ex1fZQoaAZHQKLaX779AHFoB03oA2gIR0Cqs4a9sabXdX2UKGgGR0Ci/rh4lhPTaAdN6ANoCEdAqrRSdlNDdHV9lChoBkdAoHu5/Aj6e2gHTegDaAhHQKq6mf2bobJ1fZQoaAZHQKFfQ7A+IM1oB03oA2gIR0Cqu7PCuU2UdX2UKGgGR0Ch26fYJ3PiaAdN6ANoCEdAqsA2lQ/HHXV9lChoBkdAoiFs7r9l3GgHTegDaAhHQKrAvFNtZV51fZQoaAZHQKGeEIfr8ixoB03oA2gIR0CqxrdWIXTFdX2UKGgGR0ChkGTDfm9yaAdN6ANoCEdAqsfLKmsNlXV9lChoBkdAoF9WmYSg5GgHTegDaAhHQKrOEy0KJEZ1fZQoaAZHQKClYR6F/QVoB03oA2gIR0CqzuKptJnQdX2UKGgGR0CeopuWKMvRaAdN6ANoCEdAqtZhVGTcI3V9lChoBkdAnuASwwCbMGgHTegDaAhHQKrXeVbiZOV1fZQoaAZHQKAT3VyWAwxoB03oA2gIR0Cq2/CV0Lc9dX2UKGgGR0Cf4GTwUg0TaAdN6ANoCEdAqtx4nSfDk3V9lChoBkdAoBwW8M/hVGgHTegDaAhHQKribTiKiwl1fZQoaAZHQKFgifKZDzBoB03oA2gIR0Cq44N+1Bt2dX2UKGgGR0ChHesFUyYYaAdN6ANoCEdAquheHrQgLnV9lChoBkdAod678vVVgmgHTegDaAhHQKrpGhYeT3Z1fZQoaAZHQKJS2NZvDP5oB03oA2gIR0Cq8f0Bfa6CdX2UKGgGR0Ch5T+wTufFaAdN6ANoCEdAqvMfj0cwQHV9lChoBkdAob+Jid8Rc2gHTegDaAhHQKr3u+cpb2V1fZQoaAZHQKILWhllK9RoB03oA2gIR0Cq+ESR0U48dX2UKGgGR0CgajZlWfbsaAdN6ANoCEdAqv5FMyrPt3V9lChoBkdAolgoC2c8T2gHTegDaAhHQKr/XC8e0Xx1fZQoaAZHQKGwY0bcXWRoB03oA2gIR0CrA/31anrIdX2UKGgGR0CirJRvFWGRaAdN6ANoCEdAqwSEvVVghXV9lChoBkdAowI3BWPtD2gHTegDaAhHQKsM5xVhkRV1fZQoaAZHQKMtIC17Y05oB03oA2gIR0CrDpnqNZNgdX2UKGgGR0CjEwEpRXOoaAdN6ANoCEdAqxOkfV7QcHV9lChoBkdAoWNC46Oo52gHTegDaAhHQKsUKp4rz5J1fZQoaAZHQJ6LOf29L6FoB03oA2gIR0CrGhGkWRA9dX2UKGgGR0Cc6/1sLv1EaAdN6ANoCEdAqxsuahHsknV9lChoBkdAndUR/Aj6e2gHTegDaAhHQKsftJpWV/t1fZQoaAZHQJz1Ia0hNdtoB03oA2gIR0CrIDlj/dZadX2UKGgGR0CcvUOuaF23aAdN6ANoCEdAqycGrU9ZBHV9lChoBkdAm9ej9bX6ImgHTegDaAhHQKsonbC79Q51fZQoaAZHQKA0UpUgjhVoB03oA2gIR0CrL0MvZh8ZdX2UKGgGR0CcPrc3l0YCaAdN6ANoCEdAqy/OsRxtHnV9lChoBkdAnkdPra/RFGgHTegDaAhHQKs11xDst051fZQoaAZHQJ00vysjmjloB03oA2gIR0CrNu7mU4aQdX2UKGgGR0CboydWQwK0aAdN6ANoCEdAqzum8274BXV9lChoBkdAmrAYkE9t/GgHTegDaAhHQKs8LKOktVd1fZQoaAZHQJoA9jgAIY5oB03oA2gIR0CrQghnSOR1dX2UKGgGR0Cel4TnaFmGaAdN6ANoCEdAq0OKBI4EOnV9lChoBkdAnMoVnRLK3mgHTegDaAhHQKtKfhKDkEN1fZQoaAZHQJuueePJaJRoB03oA2gIR0CrS0nrpqyodX2UKGgGR0Ccp6edTYNBaAdN6ANoCEdAq1G7yvs7dXV9lChoBkdAntj8mF8G92gHTegDaAhHQKtS21He7+V1fZQoaAZHQJ/Ou8vmHQBoB03oA2gIR0CrV3sfigkDdX2UKGgGR0CdduyeqaPTaAdN6ANoCEdAq1gNs1sLv3V9lChoBkdAnGzIKtxMnWgHTegDaAhHQKtd8FEAo5R1fZQoaAZHQJhe2+evpyJoB03oA2gIR0CrXwex4Y78dX2UKGgGR0CczZErGza9aAdN6ANoCEdAq2TAv6CUYHV9lChoBkdAnJnPttygf2gHTegDaAhHQKtlhg/keZJ1fZQoaAZHQJtldxR2r4poB03oA2gIR0CrbZMNtqHodX2UKGgGR0CePnbAUL2IaAdN6ANoCEdAq26zCemNznVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:46f8c5717bf94c557c49006ec7fb92dfec5a19526a378c77990dccecfe822319
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:373f07bdf72d1509363d61754a2a23c9bbe95b818f46727454cd741144257d22
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f133daa9d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f133daa9dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f133daa9e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f133daa9ee0>", "_build": "<function ActorCriticPolicy._build at 0x7f133daa9f70>", "forward": "<function ActorCriticPolicy.forward at 0x7f133daac040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f133daac0d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f133daac160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f133daac1f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f133daac280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f133daac310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f133daac3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f133daa3b40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677406037987170804, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAB3N3b7fAXu/gKlBv/5+Qr+pHI0/jtqUPho0pr4ljEE+N41uvzuy2D0mh2O9LpRMPuVDV7/4dos+VOUCP5xqXr3ehrY/fHyfvlMIjr+/GGI7S9vkvzQH/TtOxYg/LwBcv1kBNj/hVaM+2TM+P86CM7/Ocpg/eKA3v5+qn76BeUs/NukFv1Lukb8/zl2/jcK8vSxzCD/mq7W///dLv/mn/b7bOdi+QhN/vkpEhz29yMi/ZJSUvyhXXT8xDKu+/OHivtGaCj+UvRi+3CStPsmnOz/qCbS/4VWjPo5HrL/OgjO/xu4kPtEQP7+EX7W+owBWPzDXH79r+ok/w0HDvgH2lb6NJS6/B8KbP/FZNj/TVf8+uujkvjtqdD+ktwA/gvzdPE7eMT+ku3S/K+Wwv9U4ALw/nzm/QqrjPlevgT98pUS/WQE2P+FVoz7ZMz4/zoIzv9zoyL73s22/6/Unv4/nlD9LH8m/kP96vwkvYT7FuuS9ZaHGv8FLpzhAKma+jIdHQJUIKL81Fcm+Xw1ZPhdzTkB91dI/Q3tIveFjqL5gvOA96lSEvu9GOMDwr5o/AXcQQOoJtL/hVaM+jkesv1aKtj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA6+zS1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANqALPQAAAADZbOe/AAAAAFqF8L0AAAAAl0LxPwAAAABuc+U9AAAAAN742z8AAAAAkxg2vAAAAABqf+m/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5fu6NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJy4y70AAAAAKxntvwAAAADFkMo9AAAAAERU9D8AAAAABMB4PQAAAABN7ew/AAAAAFmjzDwAAAAAUMjwvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAENWzrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDgB6I8AAAAAHCs5L8AAAAAE06kvQAAAABiyuk/AAAAAEZ8ob0AAAAAc3rqPwAAAAAM+ag9AAAAAF643L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACyyNkzAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFn+ivAAAAAApr9m/AAAAADNuwTsAAAAAMQTnPwAAAABfChm9AAAAAGp72j8AAAAAI/iPvAAAAACIvdu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKG6/9MK1G+MAWyUTegDjAF0lEdAqh6k94eLenV9lChoBkdAoGW5TCLuQmgHTegDaAhHQKofJSXMQmN1fZQoaAZHQKIeUWO6unxoB03oA2gIR0CqJPGrCFbndX2UKGgGR0CiU0L9/BnBaAdN6ANoCEdAqiYFoi9qUXV9lChoBkdAoS+aMcZLqWgHTegDaAhHQKoqa+QEIPd1fZQoaAZHQKFaKYGdI5JoB03oA2gIR0CqKu44p+c6dX2UKGgGR0CgyEGKIi1RaAdN6ANoCEdAqjC8CxNZeXV9lChoBkdAoKXXw9aEBmgHTegDaAhHQKoyDcM3IdV1fZQoaAZHQKAROwwj+rFoB03oA2gIR0CqONs0YTCcdX2UKGgGR0CcTb09QoCuaAdN6ANoCEdAqjmurp7kXHV9lChoBkdAn1maJuVHF2gHTegDaAhHQKpAW1E3Kjl1fZQoaAZHQJyq7Pa+N99oB03oA2gIR0CqQXKZML4OdX2UKGgGR0CfsLIOYplSaAdN6ANoCEdAqkXys+3YtnV9lChoBkdAnFGTBMzuW2gHTegDaAhHQKpGiQ04zad1fZQoaAZHQKBZuxj8UEhoB03oA2gIR0CqTKDDsMRZdX2UKGgGR0Cgn7z8xbjcaAdN6ANoCEdAqk29lCkXUHV9lChoBkdAoZFgsmOU+2gHTegDaAhHQKpTevL5h0B1fZQoaAZHQKD8jXuE25xoB03oA2gIR0CqVEj81n/UdX2UKGgGR0CgrzNdJJ5FaAdN6ANoCEdAqlxOn4wh4nV9lChoBkdAoXdSAavRq2gHTegDaAhHQKpdZ2A5Jbt1fZQoaAZHQKIedVCHARFoB03oA2gIR0CqYelzuF6BdX2UKGgGR0ChFKCW/rSmaAdN6ANoCEdAqmJvyd4FA3V9lChoBkdAoiQ686FM7GgHTegDaAhHQKpoT5ckdFR1fZQoaAZHQKIz+CaJAMVoB03oA2gIR0CqaWI68xsVdX2UKGgGR0Ci4Mgm7aqTaAdN6ANoCEdAqm3BTyauwHV9lChoBkdAooiuajN6gWgHTegDaAhHQKpuadOIqLF1fZQoaAZHQKLdRVEuxr1oB03oA2gIR0Cqd0D3mFJydX2UKGgGR0CiWsMZHd43aAdN6ANoCEdAqni3eP7vX3V9lChoBkdAocEIWgvlEWgHTegDaAhHQKp9OGHHmzV1fZQoaAZHQKELtIRRMvhoB03oA2gIR0Cqfbwo1DSgdX2UKGgGR0CiJPv0Zm7KaAdN6ANoCEdAqoOHX9R77nV9lChoBkdAokWb1K5CnmgHTegDaAhHQKqEl238XN11fZQoaAZHQKF0etFrl/9oB03oA2gIR0CqiRzRQaaTdX2UKGgGR0ChiyifYjB3aAdN6ANoCEdAqompA4XGfnV9lChoBkdAoKgx31SOzmgHTegDaAhHQKqRTTnaFmF1fZQoaAZHQKB39ZamoBJoB03oA2gIR0Cqkwi1iONpdX2UKGgGR0CiEBfrjYI0aAdN6ANoCEdAqpjU1VHWjHV9lChoBkdAoYhzdi2Dx2gHTegDaAhHQKqZWKk2xY91fZQoaAZHQKKHQ7OmixpoB03oA2gIR0CqnyC8OCoTdX2UKGgGR0CiJkgHu7YkaAdN6ANoCEdAqqA1YGMXJ3V9lChoBkdAoXLDGrCFbmgHTegDaAhHQKqkq9FnZkF1fZQoaAZHQKK8nXYDklxoB03oA2gIR0CqpStPP9k0dX2UKGgGR0Ci+I7EHdGiaAdN6ANoCEdAqqsevW6K+HV9lChoBkdAoyF3n6l+E2gHTegDaAhHQKqssplz2ex1fZQoaAZHQKLaX779AHFoB03oA2gIR0Cqs4a9sabXdX2UKGgGR0Ci/rh4lhPTaAdN6ANoCEdAqrRSdlNDdHV9lChoBkdAoHu5/Aj6e2gHTegDaAhHQKq6mf2bobJ1fZQoaAZHQKFfQ7A+IM1oB03oA2gIR0Cqu7PCuU2UdX2UKGgGR0Ch26fYJ3PiaAdN6ANoCEdAqsA2lQ/HHXV9lChoBkdAoiFs7r9l3GgHTegDaAhHQKrAvFNtZV51fZQoaAZHQKGeEIfr8ixoB03oA2gIR0CqxrdWIXTFdX2UKGgGR0ChkGTDfm9yaAdN6ANoCEdAqsfLKmsNlXV9lChoBkdAoF9WmYSg5GgHTegDaAhHQKrOEy0KJEZ1fZQoaAZHQKClYR6F/QVoB03oA2gIR0CqzuKptJnQdX2UKGgGR0CeopuWKMvRaAdN6ANoCEdAqtZhVGTcI3V9lChoBkdAnuASwwCbMGgHTegDaAhHQKrXeVbiZOV1fZQoaAZHQKAT3VyWAwxoB03oA2gIR0Cq2/CV0Lc9dX2UKGgGR0Cf4GTwUg0TaAdN6ANoCEdAqtx4nSfDk3V9lChoBkdAoBwW8M/hVGgHTegDaAhHQKribTiKiwl1fZQoaAZHQKFgifKZDzBoB03oA2gIR0Cq44N+1Bt2dX2UKGgGR0ChHesFUyYYaAdN6ANoCEdAquheHrQgLnV9lChoBkdAod678vVVgmgHTegDaAhHQKrpGhYeT3Z1fZQoaAZHQKJS2NZvDP5oB03oA2gIR0Cq8f0Bfa6CdX2UKGgGR0Ch5T+wTufFaAdN6ANoCEdAqvMfj0cwQHV9lChoBkdAob+Jid8Rc2gHTegDaAhHQKr3u+cpb2V1fZQoaAZHQKILWhllK9RoB03oA2gIR0Cq+ESR0U48dX2UKGgGR0CgajZlWfbsaAdN6ANoCEdAqv5FMyrPt3V9lChoBkdAolgoC2c8T2gHTegDaAhHQKr/XC8e0Xx1fZQoaAZHQKGwY0bcXWRoB03oA2gIR0CrA/31anrIdX2UKGgGR0CirJRvFWGRaAdN6ANoCEdAqwSEvVVghXV9lChoBkdAowI3BWPtD2gHTegDaAhHQKsM5xVhkRV1fZQoaAZHQKMtIC17Y05oB03oA2gIR0CrDpnqNZNgdX2UKGgGR0CjEwEpRXOoaAdN6ANoCEdAqxOkfV7QcHV9lChoBkdAoWNC46Oo52gHTegDaAhHQKsUKp4rz5J1fZQoaAZHQJ6LOf29L6FoB03oA2gIR0CrGhGkWRA9dX2UKGgGR0Cc6/1sLv1EaAdN6ANoCEdAqxsuahHsknV9lChoBkdAndUR/Aj6e2gHTegDaAhHQKsftJpWV/t1fZQoaAZHQJz1Ia0hNdtoB03oA2gIR0CrIDlj/dZadX2UKGgGR0CcvUOuaF23aAdN6ANoCEdAqycGrU9ZBHV9lChoBkdAm9ej9bX6ImgHTegDaAhHQKsonbC79Q51fZQoaAZHQKA0UpUgjhVoB03oA2gIR0CrL0MvZh8ZdX2UKGgGR0CcPrc3l0YCaAdN6ANoCEdAqy/OsRxtHnV9lChoBkdAnkdPra/RFGgHTegDaAhHQKs11xDst051fZQoaAZHQJ00vysjmjloB03oA2gIR0CrNu7mU4aQdX2UKGgGR0CboydWQwK0aAdN6ANoCEdAqzum8274BXV9lChoBkdAmrAYkE9t/GgHTegDaAhHQKs8LKOktVd1fZQoaAZHQJoA9jgAIY5oB03oA2gIR0CrQghnSOR1dX2UKGgGR0Cel4TnaFmGaAdN6ANoCEdAq0OKBI4EOnV9lChoBkdAnMoVnRLK3mgHTegDaAhHQKtKfhKDkEN1fZQoaAZHQJuueePJaJRoB03oA2gIR0CrS0nrpqyodX2UKGgGR0Ccp6edTYNBaAdN6ANoCEdAq1G7yvs7dXV9lChoBkdAntj8mF8G92gHTegDaAhHQKtS21He7+V1fZQoaAZHQJ/Ou8vmHQBoB03oA2gIR0CrV3sfigkDdX2UKGgGR0CdduyeqaPTaAdN6ANoCEdAq1gNs1sLv3V9lChoBkdAnGzIKtxMnWgHTegDaAhHQKtd8FEAo5R1fZQoaAZHQJhe2+evpyJoB03oA2gIR0CrXwex4Y78dX2UKGgGR0CczZErGza9aAdN6ANoCEdAq2TAv6CUYHV9lChoBkdAnJnPttygf2gHTegDaAhHQKtlhg/keZJ1fZQoaAZHQJtldxR2r4poB03oA2gIR0CrbZMNtqHodX2UKGgGR0CePnbAUL2IaAdN6ANoCEdAq26zCemNznVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f929dd6a54acc685874290d37abed720aad9216568a20a68d961c9215b2a71fd
|
3 |
+
size 1244394
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1876.2631913673736, "std_reward": 70.3505778489686, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-26T11:07:31.281074"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1799d4227d597c5cdd0660a46ec3eaf68df31bbdaf2a81ee9b14c2456e354fd3
|
3 |
+
size 2136
|