Mithul commited on
Commit
0e79e50
·
1 Parent(s): 20450dd

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1876.26 +/- 70.35
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:954e82463184fe17631bd8ceade9d4e2946f0198653c1d70adb57ab4e9eca7cd
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f133daa9d30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f133daa9dc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f133daa9e50>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f133daa9ee0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f133daa9f70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f133daac040>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f133daac0d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f133daac160>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f133daac1f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f133daac280>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f133daac310>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f133daac3a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f133daa3b40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1677406037987170804,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAB3N3b7fAXu/gKlBv/5+Qr+pHI0/jtqUPho0pr4ljEE+N41uvzuy2D0mh2O9LpRMPuVDV7/4dos+VOUCP5xqXr3ehrY/fHyfvlMIjr+/GGI7S9vkvzQH/TtOxYg/LwBcv1kBNj/hVaM+2TM+P86CM7/Ocpg/eKA3v5+qn76BeUs/NukFv1Lukb8/zl2/jcK8vSxzCD/mq7W///dLv/mn/b7bOdi+QhN/vkpEhz29yMi/ZJSUvyhXXT8xDKu+/OHivtGaCj+UvRi+3CStPsmnOz/qCbS/4VWjPo5HrL/OgjO/xu4kPtEQP7+EX7W+owBWPzDXH79r+ok/w0HDvgH2lb6NJS6/B8KbP/FZNj/TVf8+uujkvjtqdD+ktwA/gvzdPE7eMT+ku3S/K+Wwv9U4ALw/nzm/QqrjPlevgT98pUS/WQE2P+FVoz7ZMz4/zoIzv9zoyL73s22/6/Unv4/nlD9LH8m/kP96vwkvYT7FuuS9ZaHGv8FLpzhAKma+jIdHQJUIKL81Fcm+Xw1ZPhdzTkB91dI/Q3tIveFjqL5gvOA96lSEvu9GOMDwr5o/AXcQQOoJtL/hVaM+jkesv1aKtj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA6+zS1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANqALPQAAAADZbOe/AAAAAFqF8L0AAAAAl0LxPwAAAABuc+U9AAAAAN742z8AAAAAkxg2vAAAAABqf+m/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5fu6NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJy4y70AAAAAKxntvwAAAADFkMo9AAAAAERU9D8AAAAABMB4PQAAAABN7ew/AAAAAFmjzDwAAAAAUMjwvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAENWzrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDgB6I8AAAAAHCs5L8AAAAAE06kvQAAAABiyuk/AAAAAEZ8ob0AAAAAc3rqPwAAAAAM+ag9AAAAAF643L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACyyNkzAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFn+ivAAAAAApr9m/AAAAADNuwTsAAAAAMQTnPwAAAABfChm9AAAAAGp72j8AAAAAI/iPvAAAAACIvdu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKG6/9MK1G+MAWyUTegDjAF0lEdAqh6k94eLenV9lChoBkdAoGW5TCLuQmgHTegDaAhHQKofJSXMQmN1fZQoaAZHQKIeUWO6unxoB03oA2gIR0CqJPGrCFbndX2UKGgGR0CiU0L9/BnBaAdN6ANoCEdAqiYFoi9qUXV9lChoBkdAoS+aMcZLqWgHTegDaAhHQKoqa+QEIPd1fZQoaAZHQKFaKYGdI5JoB03oA2gIR0CqKu44p+c6dX2UKGgGR0CgyEGKIi1RaAdN6ANoCEdAqjC8CxNZeXV9lChoBkdAoKXXw9aEBmgHTegDaAhHQKoyDcM3IdV1fZQoaAZHQKAROwwj+rFoB03oA2gIR0CqONs0YTCcdX2UKGgGR0CcTb09QoCuaAdN6ANoCEdAqjmurp7kXHV9lChoBkdAn1maJuVHF2gHTegDaAhHQKpAW1E3Kjl1fZQoaAZHQJyq7Pa+N99oB03oA2gIR0CqQXKZML4OdX2UKGgGR0CfsLIOYplSaAdN6ANoCEdAqkXys+3YtnV9lChoBkdAnFGTBMzuW2gHTegDaAhHQKpGiQ04zad1fZQoaAZHQKBZuxj8UEhoB03oA2gIR0CqTKDDsMRZdX2UKGgGR0Cgn7z8xbjcaAdN6ANoCEdAqk29lCkXUHV9lChoBkdAoZFgsmOU+2gHTegDaAhHQKpTevL5h0B1fZQoaAZHQKD8jXuE25xoB03oA2gIR0CqVEj81n/UdX2UKGgGR0CgrzNdJJ5FaAdN6ANoCEdAqlxOn4wh4nV9lChoBkdAoXdSAavRq2gHTegDaAhHQKpdZ2A5Jbt1fZQoaAZHQKIedVCHARFoB03oA2gIR0CqYelzuF6BdX2UKGgGR0ChFKCW/rSmaAdN6ANoCEdAqmJvyd4FA3V9lChoBkdAoiQ686FM7GgHTegDaAhHQKpoT5ckdFR1fZQoaAZHQKIz+CaJAMVoB03oA2gIR0CqaWI68xsVdX2UKGgGR0Ci4Mgm7aqTaAdN6ANoCEdAqm3BTyauwHV9lChoBkdAooiuajN6gWgHTegDaAhHQKpuadOIqLF1fZQoaAZHQKLdRVEuxr1oB03oA2gIR0Cqd0D3mFJydX2UKGgGR0CiWsMZHd43aAdN6ANoCEdAqni3eP7vX3V9lChoBkdAocEIWgvlEWgHTegDaAhHQKp9OGHHmzV1fZQoaAZHQKELtIRRMvhoB03oA2gIR0Cqfbwo1DSgdX2UKGgGR0CiJPv0Zm7KaAdN6ANoCEdAqoOHX9R77nV9lChoBkdAokWb1K5CnmgHTegDaAhHQKqEl238XN11fZQoaAZHQKF0etFrl/9oB03oA2gIR0CqiRzRQaaTdX2UKGgGR0ChiyifYjB3aAdN6ANoCEdAqompA4XGfnV9lChoBkdAoKgx31SOzmgHTegDaAhHQKqRTTnaFmF1fZQoaAZHQKB39ZamoBJoB03oA2gIR0Cqkwi1iONpdX2UKGgGR0CiEBfrjYI0aAdN6ANoCEdAqpjU1VHWjHV9lChoBkdAoYhzdi2Dx2gHTegDaAhHQKqZWKk2xY91fZQoaAZHQKKHQ7OmixpoB03oA2gIR0CqnyC8OCoTdX2UKGgGR0CiJkgHu7YkaAdN6ANoCEdAqqA1YGMXJ3V9lChoBkdAoXLDGrCFbmgHTegDaAhHQKqkq9FnZkF1fZQoaAZHQKK8nXYDklxoB03oA2gIR0CqpStPP9k0dX2UKGgGR0Ci+I7EHdGiaAdN6ANoCEdAqqsevW6K+HV9lChoBkdAoyF3n6l+E2gHTegDaAhHQKqssplz2ex1fZQoaAZHQKLaX779AHFoB03oA2gIR0Cqs4a9sabXdX2UKGgGR0Ci/rh4lhPTaAdN6ANoCEdAqrRSdlNDdHV9lChoBkdAoHu5/Aj6e2gHTegDaAhHQKq6mf2bobJ1fZQoaAZHQKFfQ7A+IM1oB03oA2gIR0Cqu7PCuU2UdX2UKGgGR0Ch26fYJ3PiaAdN6ANoCEdAqsA2lQ/HHXV9lChoBkdAoiFs7r9l3GgHTegDaAhHQKrAvFNtZV51fZQoaAZHQKGeEIfr8ixoB03oA2gIR0CqxrdWIXTFdX2UKGgGR0ChkGTDfm9yaAdN6ANoCEdAqsfLKmsNlXV9lChoBkdAoF9WmYSg5GgHTegDaAhHQKrOEy0KJEZ1fZQoaAZHQKClYR6F/QVoB03oA2gIR0CqzuKptJnQdX2UKGgGR0CeopuWKMvRaAdN6ANoCEdAqtZhVGTcI3V9lChoBkdAnuASwwCbMGgHTegDaAhHQKrXeVbiZOV1fZQoaAZHQKAT3VyWAwxoB03oA2gIR0Cq2/CV0Lc9dX2UKGgGR0Cf4GTwUg0TaAdN6ANoCEdAqtx4nSfDk3V9lChoBkdAoBwW8M/hVGgHTegDaAhHQKribTiKiwl1fZQoaAZHQKFgifKZDzBoB03oA2gIR0Cq44N+1Bt2dX2UKGgGR0ChHesFUyYYaAdN6ANoCEdAquheHrQgLnV9lChoBkdAod678vVVgmgHTegDaAhHQKrpGhYeT3Z1fZQoaAZHQKJS2NZvDP5oB03oA2gIR0Cq8f0Bfa6CdX2UKGgGR0Ch5T+wTufFaAdN6ANoCEdAqvMfj0cwQHV9lChoBkdAob+Jid8Rc2gHTegDaAhHQKr3u+cpb2V1fZQoaAZHQKILWhllK9RoB03oA2gIR0Cq+ESR0U48dX2UKGgGR0CgajZlWfbsaAdN6ANoCEdAqv5FMyrPt3V9lChoBkdAolgoC2c8T2gHTegDaAhHQKr/XC8e0Xx1fZQoaAZHQKGwY0bcXWRoB03oA2gIR0CrA/31anrIdX2UKGgGR0CirJRvFWGRaAdN6ANoCEdAqwSEvVVghXV9lChoBkdAowI3BWPtD2gHTegDaAhHQKsM5xVhkRV1fZQoaAZHQKMtIC17Y05oB03oA2gIR0CrDpnqNZNgdX2UKGgGR0CjEwEpRXOoaAdN6ANoCEdAqxOkfV7QcHV9lChoBkdAoWNC46Oo52gHTegDaAhHQKsUKp4rz5J1fZQoaAZHQJ6LOf29L6FoB03oA2gIR0CrGhGkWRA9dX2UKGgGR0Cc6/1sLv1EaAdN6ANoCEdAqxsuahHsknV9lChoBkdAndUR/Aj6e2gHTegDaAhHQKsftJpWV/t1fZQoaAZHQJz1Ia0hNdtoB03oA2gIR0CrIDlj/dZadX2UKGgGR0CcvUOuaF23aAdN6ANoCEdAqycGrU9ZBHV9lChoBkdAm9ej9bX6ImgHTegDaAhHQKsonbC79Q51fZQoaAZHQKA0UpUgjhVoB03oA2gIR0CrL0MvZh8ZdX2UKGgGR0CcPrc3l0YCaAdN6ANoCEdAqy/OsRxtHnV9lChoBkdAnkdPra/RFGgHTegDaAhHQKs11xDst051fZQoaAZHQJ00vysjmjloB03oA2gIR0CrNu7mU4aQdX2UKGgGR0CboydWQwK0aAdN6ANoCEdAqzum8274BXV9lChoBkdAmrAYkE9t/GgHTegDaAhHQKs8LKOktVd1fZQoaAZHQJoA9jgAIY5oB03oA2gIR0CrQghnSOR1dX2UKGgGR0Cel4TnaFmGaAdN6ANoCEdAq0OKBI4EOnV9lChoBkdAnMoVnRLK3mgHTegDaAhHQKtKfhKDkEN1fZQoaAZHQJuueePJaJRoB03oA2gIR0CrS0nrpqyodX2UKGgGR0Ccp6edTYNBaAdN6ANoCEdAq1G7yvs7dXV9lChoBkdAntj8mF8G92gHTegDaAhHQKtS21He7+V1fZQoaAZHQJ/Ou8vmHQBoB03oA2gIR0CrV3sfigkDdX2UKGgGR0CdduyeqaPTaAdN6ANoCEdAq1gNs1sLv3V9lChoBkdAnGzIKtxMnWgHTegDaAhHQKtd8FEAo5R1fZQoaAZHQJhe2+evpyJoB03oA2gIR0CrXwex4Y78dX2UKGgGR0CczZErGza9aAdN6ANoCEdAq2TAv6CUYHV9lChoBkdAnJnPttygf2gHTegDaAhHQKtlhg/keZJ1fZQoaAZHQJtldxR2r4poB03oA2gIR0CrbZMNtqHodX2UKGgGR0CePnbAUL2IaAdN6ANoCEdAq26zCemNznVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46f8c5717bf94c557c49006ec7fb92dfec5a19526a378c77990dccecfe822319
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:373f07bdf72d1509363d61754a2a23c9bbe95b818f46727454cd741144257d22
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f133daa9d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f133daa9dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f133daa9e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f133daa9ee0>", "_build": "<function ActorCriticPolicy._build at 0x7f133daa9f70>", "forward": "<function ActorCriticPolicy.forward at 0x7f133daac040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f133daac0d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f133daac160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f133daac1f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f133daac280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f133daac310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f133daac3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f133daa3b40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677406037987170804, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAB3N3b7fAXu/gKlBv/5+Qr+pHI0/jtqUPho0pr4ljEE+N41uvzuy2D0mh2O9LpRMPuVDV7/4dos+VOUCP5xqXr3ehrY/fHyfvlMIjr+/GGI7S9vkvzQH/TtOxYg/LwBcv1kBNj/hVaM+2TM+P86CM7/Ocpg/eKA3v5+qn76BeUs/NukFv1Lukb8/zl2/jcK8vSxzCD/mq7W///dLv/mn/b7bOdi+QhN/vkpEhz29yMi/ZJSUvyhXXT8xDKu+/OHivtGaCj+UvRi+3CStPsmnOz/qCbS/4VWjPo5HrL/OgjO/xu4kPtEQP7+EX7W+owBWPzDXH79r+ok/w0HDvgH2lb6NJS6/B8KbP/FZNj/TVf8+uujkvjtqdD+ktwA/gvzdPE7eMT+ku3S/K+Wwv9U4ALw/nzm/QqrjPlevgT98pUS/WQE2P+FVoz7ZMz4/zoIzv9zoyL73s22/6/Unv4/nlD9LH8m/kP96vwkvYT7FuuS9ZaHGv8FLpzhAKma+jIdHQJUIKL81Fcm+Xw1ZPhdzTkB91dI/Q3tIveFjqL5gvOA96lSEvu9GOMDwr5o/AXcQQOoJtL/hVaM+jkesv1aKtj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA6+zS1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACANqALPQAAAADZbOe/AAAAAFqF8L0AAAAAl0LxPwAAAABuc+U9AAAAAN742z8AAAAAkxg2vAAAAABqf+m/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5fu6NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJy4y70AAAAAKxntvwAAAADFkMo9AAAAAERU9D8AAAAABMB4PQAAAABN7ew/AAAAAFmjzDwAAAAAUMjwvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAENWzrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDgB6I8AAAAAHCs5L8AAAAAE06kvQAAAABiyuk/AAAAAEZ8ob0AAAAAc3rqPwAAAAAM+ag9AAAAAF643L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACyyNkzAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFn+ivAAAAAApr9m/AAAAADNuwTsAAAAAMQTnPwAAAABfChm9AAAAAGp72j8AAAAAI/iPvAAAAACIvdu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKG6/9MK1G+MAWyUTegDjAF0lEdAqh6k94eLenV9lChoBkdAoGW5TCLuQmgHTegDaAhHQKofJSXMQmN1fZQoaAZHQKIeUWO6unxoB03oA2gIR0CqJPGrCFbndX2UKGgGR0CiU0L9/BnBaAdN6ANoCEdAqiYFoi9qUXV9lChoBkdAoS+aMcZLqWgHTegDaAhHQKoqa+QEIPd1fZQoaAZHQKFaKYGdI5JoB03oA2gIR0CqKu44p+c6dX2UKGgGR0CgyEGKIi1RaAdN6ANoCEdAqjC8CxNZeXV9lChoBkdAoKXXw9aEBmgHTegDaAhHQKoyDcM3IdV1fZQoaAZHQKAROwwj+rFoB03oA2gIR0CqONs0YTCcdX2UKGgGR0CcTb09QoCuaAdN6ANoCEdAqjmurp7kXHV9lChoBkdAn1maJuVHF2gHTegDaAhHQKpAW1E3Kjl1fZQoaAZHQJyq7Pa+N99oB03oA2gIR0CqQXKZML4OdX2UKGgGR0CfsLIOYplSaAdN6ANoCEdAqkXys+3YtnV9lChoBkdAnFGTBMzuW2gHTegDaAhHQKpGiQ04zad1fZQoaAZHQKBZuxj8UEhoB03oA2gIR0CqTKDDsMRZdX2UKGgGR0Cgn7z8xbjcaAdN6ANoCEdAqk29lCkXUHV9lChoBkdAoZFgsmOU+2gHTegDaAhHQKpTevL5h0B1fZQoaAZHQKD8jXuE25xoB03oA2gIR0CqVEj81n/UdX2UKGgGR0CgrzNdJJ5FaAdN6ANoCEdAqlxOn4wh4nV9lChoBkdAoXdSAavRq2gHTegDaAhHQKpdZ2A5Jbt1fZQoaAZHQKIedVCHARFoB03oA2gIR0CqYelzuF6BdX2UKGgGR0ChFKCW/rSmaAdN6ANoCEdAqmJvyd4FA3V9lChoBkdAoiQ686FM7GgHTegDaAhHQKpoT5ckdFR1fZQoaAZHQKIz+CaJAMVoB03oA2gIR0CqaWI68xsVdX2UKGgGR0Ci4Mgm7aqTaAdN6ANoCEdAqm3BTyauwHV9lChoBkdAooiuajN6gWgHTegDaAhHQKpuadOIqLF1fZQoaAZHQKLdRVEuxr1oB03oA2gIR0Cqd0D3mFJydX2UKGgGR0CiWsMZHd43aAdN6ANoCEdAqni3eP7vX3V9lChoBkdAocEIWgvlEWgHTegDaAhHQKp9OGHHmzV1fZQoaAZHQKELtIRRMvhoB03oA2gIR0Cqfbwo1DSgdX2UKGgGR0CiJPv0Zm7KaAdN6ANoCEdAqoOHX9R77nV9lChoBkdAokWb1K5CnmgHTegDaAhHQKqEl238XN11fZQoaAZHQKF0etFrl/9oB03oA2gIR0CqiRzRQaaTdX2UKGgGR0ChiyifYjB3aAdN6ANoCEdAqompA4XGfnV9lChoBkdAoKgx31SOzmgHTegDaAhHQKqRTTnaFmF1fZQoaAZHQKB39ZamoBJoB03oA2gIR0Cqkwi1iONpdX2UKGgGR0CiEBfrjYI0aAdN6ANoCEdAqpjU1VHWjHV9lChoBkdAoYhzdi2Dx2gHTegDaAhHQKqZWKk2xY91fZQoaAZHQKKHQ7OmixpoB03oA2gIR0CqnyC8OCoTdX2UKGgGR0CiJkgHu7YkaAdN6ANoCEdAqqA1YGMXJ3V9lChoBkdAoXLDGrCFbmgHTegDaAhHQKqkq9FnZkF1fZQoaAZHQKK8nXYDklxoB03oA2gIR0CqpStPP9k0dX2UKGgGR0Ci+I7EHdGiaAdN6ANoCEdAqqsevW6K+HV9lChoBkdAoyF3n6l+E2gHTegDaAhHQKqssplz2ex1fZQoaAZHQKLaX779AHFoB03oA2gIR0Cqs4a9sabXdX2UKGgGR0Ci/rh4lhPTaAdN6ANoCEdAqrRSdlNDdHV9lChoBkdAoHu5/Aj6e2gHTegDaAhHQKq6mf2bobJ1fZQoaAZHQKFfQ7A+IM1oB03oA2gIR0Cqu7PCuU2UdX2UKGgGR0Ch26fYJ3PiaAdN6ANoCEdAqsA2lQ/HHXV9lChoBkdAoiFs7r9l3GgHTegDaAhHQKrAvFNtZV51fZQoaAZHQKGeEIfr8ixoB03oA2gIR0CqxrdWIXTFdX2UKGgGR0ChkGTDfm9yaAdN6ANoCEdAqsfLKmsNlXV9lChoBkdAoF9WmYSg5GgHTegDaAhHQKrOEy0KJEZ1fZQoaAZHQKClYR6F/QVoB03oA2gIR0CqzuKptJnQdX2UKGgGR0CeopuWKMvRaAdN6ANoCEdAqtZhVGTcI3V9lChoBkdAnuASwwCbMGgHTegDaAhHQKrXeVbiZOV1fZQoaAZHQKAT3VyWAwxoB03oA2gIR0Cq2/CV0Lc9dX2UKGgGR0Cf4GTwUg0TaAdN6ANoCEdAqtx4nSfDk3V9lChoBkdAoBwW8M/hVGgHTegDaAhHQKribTiKiwl1fZQoaAZHQKFgifKZDzBoB03oA2gIR0Cq44N+1Bt2dX2UKGgGR0ChHesFUyYYaAdN6ANoCEdAquheHrQgLnV9lChoBkdAod678vVVgmgHTegDaAhHQKrpGhYeT3Z1fZQoaAZHQKJS2NZvDP5oB03oA2gIR0Cq8f0Bfa6CdX2UKGgGR0Ch5T+wTufFaAdN6ANoCEdAqvMfj0cwQHV9lChoBkdAob+Jid8Rc2gHTegDaAhHQKr3u+cpb2V1fZQoaAZHQKILWhllK9RoB03oA2gIR0Cq+ESR0U48dX2UKGgGR0CgajZlWfbsaAdN6ANoCEdAqv5FMyrPt3V9lChoBkdAolgoC2c8T2gHTegDaAhHQKr/XC8e0Xx1fZQoaAZHQKGwY0bcXWRoB03oA2gIR0CrA/31anrIdX2UKGgGR0CirJRvFWGRaAdN6ANoCEdAqwSEvVVghXV9lChoBkdAowI3BWPtD2gHTegDaAhHQKsM5xVhkRV1fZQoaAZHQKMtIC17Y05oB03oA2gIR0CrDpnqNZNgdX2UKGgGR0CjEwEpRXOoaAdN6ANoCEdAqxOkfV7QcHV9lChoBkdAoWNC46Oo52gHTegDaAhHQKsUKp4rz5J1fZQoaAZHQJ6LOf29L6FoB03oA2gIR0CrGhGkWRA9dX2UKGgGR0Cc6/1sLv1EaAdN6ANoCEdAqxsuahHsknV9lChoBkdAndUR/Aj6e2gHTegDaAhHQKsftJpWV/t1fZQoaAZHQJz1Ia0hNdtoB03oA2gIR0CrIDlj/dZadX2UKGgGR0CcvUOuaF23aAdN6ANoCEdAqycGrU9ZBHV9lChoBkdAm9ej9bX6ImgHTegDaAhHQKsonbC79Q51fZQoaAZHQKA0UpUgjhVoB03oA2gIR0CrL0MvZh8ZdX2UKGgGR0CcPrc3l0YCaAdN6ANoCEdAqy/OsRxtHnV9lChoBkdAnkdPra/RFGgHTegDaAhHQKs11xDst051fZQoaAZHQJ00vysjmjloB03oA2gIR0CrNu7mU4aQdX2UKGgGR0CboydWQwK0aAdN6ANoCEdAqzum8274BXV9lChoBkdAmrAYkE9t/GgHTegDaAhHQKs8LKOktVd1fZQoaAZHQJoA9jgAIY5oB03oA2gIR0CrQghnSOR1dX2UKGgGR0Cel4TnaFmGaAdN6ANoCEdAq0OKBI4EOnV9lChoBkdAnMoVnRLK3mgHTegDaAhHQKtKfhKDkEN1fZQoaAZHQJuueePJaJRoB03oA2gIR0CrS0nrpqyodX2UKGgGR0Ccp6edTYNBaAdN6ANoCEdAq1G7yvs7dXV9lChoBkdAntj8mF8G92gHTegDaAhHQKtS21He7+V1fZQoaAZHQJ/Ou8vmHQBoB03oA2gIR0CrV3sfigkDdX2UKGgGR0CdduyeqaPTaAdN6ANoCEdAq1gNs1sLv3V9lChoBkdAnGzIKtxMnWgHTegDaAhHQKtd8FEAo5R1fZQoaAZHQJhe2+evpyJoB03oA2gIR0CrXwex4Y78dX2UKGgGR0CczZErGza9aAdN6ANoCEdAq2TAv6CUYHV9lChoBkdAnJnPttygf2gHTegDaAhHQKtlhg/keZJ1fZQoaAZHQJtldxR2r4poB03oA2gIR0CrbZMNtqHodX2UKGgGR0CePnbAUL2IaAdN6ANoCEdAq26zCemNznVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f929dd6a54acc685874290d37abed720aad9216568a20a68d961c9215b2a71fd
3
+ size 1244394
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1876.2631913673736, "std_reward": 70.3505778489686, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-26T11:07:31.281074"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1799d4227d597c5cdd0660a46ec3eaf68df31bbdaf2a81ee9b14c2456e354fd3
3
+ size 2136