Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 267.17 +/- 18.47
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f552e6d0d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f552e6d0dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f552e6d0e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f552e6d0ee0>", "_build": "<function ActorCriticPolicy._build at 0x7f552e6d0f70>", "forward": "<function ActorCriticPolicy.forward at 0x7f552e6d6040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f552e6d60d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f552e6d6160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f552e6d61f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f552e6d6280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f552e6d6310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f552e6d4090>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672352883179506004, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNJDjw8ano+jLe6veqamr6FLk89EmJWvAAAAAAAAAAArUkzvj6NhT/1Y8q9IkIKv0exhr4em3Y9AAAAAAAAAABm7ku7rhmgukNSbjOCt8av38kgumoLyrMAAIA/AACAP4AQ7T0O9wc/ly+UvUrIur7/xqo9ogoJPAAAAAAAAAAAAHH8vFA9Oj+K/iU9BIPnvkJwoDyG5k88AAAAAAAAAABzPoM94oGKPxLJxT1R0hC//KSqPVz1rT0AAAAAAAAAAJojq7xsW6s/wz1svtp6/b5+mKO8p70lvgAAAAAAAAAAM7GnPOHgiLrAyBw4SQbIMlTfXzpiTDW3AACAPwAAgD971ae+HWwiP1ZrTz5VVMS+N2vVvcLmDT4AAAAAAAAAAABypjxuy4M96jgvvnqcZ74e8w693j+ZPAAAAAAAAAAAzXqvPeOqNj8muUo9H5IIvwoynz3ICT09AAAAAAAAAABaA5699sBUujdjzLkJVtO1joSeOzaT6zgAAAAAAAAAACBKAD6CPLc/+xMGP4qbc755+hA+mm2RPgAAAAAAAAAAFqWBvo7wqz9GEw6/itoOvwvo1L6yXey9AAAAAAAAAADAiAO+MgiWP9zrAb9aXiG/u7xvvjsCuL4AAAAAAAAAAObdpr321C66MAnGumN6VLaaAFw79inmOQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbjKqDGMMcUCUhpRSlIwBbJRL5YwBdJRHQJ1haPwNLDh1fZQoaAZoCWgPQwjKbfse9dFyQJSGlFKUaBVL4WgWR0CdYnc5Ke05dX2UKGgGaAloD0MIdPBMaFIucUCUhpRSlGgVTScBaBZHQJ1ih0xM3611fZQoaAZoCWgPQwgRpiiXxk1wQJSGlFKUaBVNGAFoFkdAnWKQXhwVCXV9lChoBmgJaA9DCP0RhgHLnnFAlIaUUpRoFUvnaBZHQJ1jhp/PPcB1fZQoaAZoCWgPQwjUf9b8uBxyQJSGlFKUaBVL6mgWR0CdY7wsXizcdX2UKGgGaAloD0MIttYXCS2UcECUhpRSlGgVTRABaBZHQJ1klCTlkpZ1fZQoaAZoCWgPQwjTo6mezHRwQJSGlFKUaBVL+WgWR0CdZLol2NeddX2UKGgGaAloD0MIda4oJUREc0CUhpRSlGgVS9VoFkdAnWUA6hg3LnV9lChoBmgJaA9DCFgDlIaauXNAlIaUUpRoFU0LAWgWR0CdZSamXPZ7dX2UKGgGaAloD0MI1jVaDjQBckCUhpRSlGgVS85oFkdAnWU8L0BfbHV9lChoBmgJaA9DCJqUgm5v6HJAlIaUUpRoFUvIaBZHQJ1lU0DU3GZ1fZQoaAZoCWgPQwjZ6JyfIlhyQJSGlFKUaBVNgQFoFkdAnWV4phF3IXV9lChoBmgJaA9DCOFGyhZJj3JAlIaUUpRoFUvnaBZHQJ1lgaP0Zm91fZQoaAZoCWgPQwgb17/rM8s4QJSGlFKUaBVLtmgWR0CdZZ4AS39adX2UKGgGaAloD0MIq3XicvyLcECUhpRSlGgVS/VoFkdAnWeUmY0EYHV9lChoBmgJaA9DCEnyXN/HDHFAlIaUUpRoFUvWaBZHQJ1n29Zid8R1fZQoaAZoCWgPQwjZzYx+tOdxQJSGlFKUaBVL2mgWR0CdaAgfU4JedX2UKGgGaAloD0MIga/o1mtTUECUhpRSlGgVS5VoFkdAnWltdNWU8nV9lChoBmgJaA9DCHpvDAGALXFAlIaUUpRoFUvkaBZHQJ1pjAEdNnJ1fZQoaAZoCWgPQwidSZuqu3lyQJSGlFKUaBVNFgFoFkdAnWmurdWQwXV9lChoBmgJaA9DCNUkeENat3FAlIaUUpRoFU0BAWgWR0CdahPJaJQ+dX2UKGgGaAloD0MI29/ZHn0scUCUhpRSlGgVS+VoFkdAnWpojOcDsHV9lChoBmgJaA9DCDXwoxr2Um5AlIaUUpRoFUvQaBZHQJ1qcAQxveh1fZQoaAZoCWgPQwifWKfK99ZwQJSGlFKUaBVL4mgWR0Cdangx8D0UdX2UKGgGaAloD0MI6YGPwYo8bkCUhpRSlGgVS9FoFkdAnWqMTewcHXV9lChoBmgJaA9DCHsQAvIl025AlIaUUpRoFUviaBZHQJ1q/ORkmQd1fZQoaAZoCWgPQwhDVUylH8pvQJSGlFKUaBVL8GgWR0Cdav5B1LamdX2UKGgGaAloD0MIWp9yTBaPc0CUhpRSlGgVS/hoFkdAnWug2VE/jnV9lChoBmgJaA9DCG9nX3kQDHFAlIaUUpRoFU0BAWgWR0Cda8sYEW69dX2UKGgGaAloD0MI3jmUoeo/c0CUhpRSlGgVS/VoFkdAnW4JhKDkEXV9lChoBmgJaA9DCL5PVaFBR3FAlIaUUpRoFUvQaBZHQJ2BQ6T4cm11fZQoaAZoCWgPQwggm+RHPBpxQJSGlFKUaBVL1WgWR0CdgUkU9IPLdX2UKGgGaAloD0MIUmABTBnGU0CUhpRSlGgVS7NoFkdAnYFYaLn9vXV9lChoBmgJaA9DCAppjUEnrXFAlIaUUpRoFU0fAWgWR0CdgW938n/ldX2UKGgGaAloD0MIJgFqahnScECUhpRSlGgVS9ZoFkdAnYGVM7EHdHV9lChoBmgJaA9DCAaf5uRFyWxAlIaUUpRoFUveaBZHQJ2CnUd7v5R1fZQoaAZoCWgPQwgUIuAQqqlvQJSGlFKUaBVLymgWR0Cdgr6Y3Ns4dX2UKGgGaAloD0MIuKzCZgB1b0CUhpRSlGgVS/doFkdAnYL7WiDdxnV9lChoBmgJaA9DCGSRJt6Bq29AlIaUUpRoFUvraBZHQJ2DGUUwi7l1fZQoaAZoCWgPQwhxdmuZzI1yQJSGlFKUaBVL5WgWR0Cdg5AWzniedX2UKGgGaAloD0MI9rNYiqSxcECUhpRSlGgVS89oFkdAnYPKz3RG+nV9lChoBmgJaA9DCH/5ZMXwiXJAlIaUUpRoFU0OAWgWR0Cdg/850bLmdX2UKGgGaAloD0MINXo1QGlxcECUhpRSlGgVS95oFkdAnYRphF3IMnV9lChoBmgJaA9DCEUuOIP/J3BAlIaUUpRoFUvJaBZHQJ2HMSxqwhZ1fZQoaAZoCWgPQwjOxkrM8zJxQJSGlFKUaBVL62gWR0Cdh4Kk2xY8dX2UKGgGaAloD0MIf2snSgILcUCUhpRSlGgVS9poFkdAnYeWvOhTO3V9lChoBmgJaA9DCAtfX+tSq3FAlIaUUpRoFUvtaBZHQJ2IIb2lEZ11fZQoaAZoCWgPQwhl4ICWbhpyQJSGlFKUaBVL/WgWR0CdiKXlbNbDdX2UKGgGaAloD0MIa5p3nKKub0CUhpRSlGgVS9BoFkdAnYjHmV7hN3V9lChoBmgJaA9DCCl1yThGtXFAlIaUUpRoFUv+aBZHQJ2I73QD3dt1fZQoaAZoCWgPQwiD+MCOv2NwQJSGlFKUaBVL22gWR0CdiPyaNMoMdX2UKGgGaAloD0MI6UfDKfOobkCUhpRSlGgVS9NoFkdAnYkz238XN3V9lChoBmgJaA9DCCmwAKYMiFlAlIaUUpRoFU3oA2gWR0CdiVN70Fr3dX2UKGgGaAloD0MIPStpxTeScUCUhpRSlGgVS8poFkdAnYlcTrVvuXV9lChoBmgJaA9DCHam0HlNTnFAlIaUUpRoFUvpaBZHQJ2Jmc9W6sh1fZQoaAZoCWgPQwiD+StkLtxwQJSGlFKUaBVLy2gWR0CdibHPNVzZdX2UKGgGaAloD0MIibFMv8R1b0CUhpRSlGgVS9doFkdAnYnMNUfgaXV9lChoBmgJaA9DCBAIdCZte29AlIaUUpRoFUv7aBZHQJ2K/1VYISl1fZQoaAZoCWgPQwiLUdfae/BtQJSGlFKUaBVL1WgWR0CdjMS2H+IedX2UKGgGaAloD0MIPUhPkcP7ckCUhpRSlGgVS+xoFkdAnY1/LcKw6nV9lChoBmgJaA9DCPmDgeee/3JAlIaUUpRoFUvLaBZHQJ2N9mh/RVp1fZQoaAZoCWgPQwi1iv7QzNBuQJSGlFKUaBVL2mgWR0CdjhMKCxu9dX2UKGgGaAloD0MILAyR09cIbkCUhpRSlGgVTRABaBZHQJ2ON8Ti84B1fZQoaAZoCWgPQwhvn1VmSoJzQJSGlFKUaBVL82gWR0CdjkXpnpSrdX2UKGgGaAloD0MIFceBV0vCcECUhpRSlGgVS9FoFkdAnY5cdgfEGnV9lChoBmgJaA9DCP0VMlfGHHBAlIaUUpRoFUvVaBZHQJ2OkCgbp/x1fZQoaAZoCWgPQwgVjiCVImZyQJSGlFKUaBVL7WgWR0CdjqdwNsnBdX2UKGgGaAloD0MITUpBt5dnc0CUhpRSlGgVS+1oFkdAnY8h1cMVlHV9lChoBmgJaA9DCOeNk8I8VnJAlIaUUpRoFU0GAWgWR0Cdj1UKArhBdX2UKGgGaAloD0MIUIvBw/R2cUCUhpRSlGgVS+9oFkdAnY9zDn/1hHV9lChoBmgJaA9DCEhrDDohuW5AlIaUUpRoFUvtaBZHQJ2Pgg5imVJ1fZQoaAZoCWgPQwjfNlMhnoxxQJSGlFKUaBVLymgWR0CdkCmmLtNSdX2UKGgGaAloD0MIaYzWURWLcUCUhpRSlGgVTQ0BaBZHQJ2QWaTfR/p1fZQoaAZoCWgPQwgWwf9W8jZyQJSGlFKUaBVL52gWR0Cdkn/47A+IdX2UKGgGaAloD0MIblFmgwwKcUCUhpRSlGgVS8loFkdAnZLO5jH4oXV9lChoBmgJaA9DCHh8e9cgJHFAlIaUUpRoFUv2aBZHQJ2TrKB/Zuh1fZQoaAZoCWgPQwiIvruVpXlwQJSGlFKUaBVL5mgWR0Cdk/pkwvg4dX2UKGgGaAloD0MIqgzjbpDqbkCUhpRSlGgVS9doFkdAnZQE0SAYpHV9lChoBmgJaA9DCKJgxhTsZHJAlIaUUpRoFUvgaBZHQJ2UJ2IO6NF1fZQoaAZoCWgPQwjeVnptdjJwQJSGlFKUaBVL6mgWR0CdlC+x4Y78dX2UKGgGaAloD0MIa9PYXotaZkCUhpRSlGgVTegDaBZHQJ2Ud7XxvvV1fZQoaAZoCWgPQwjeAZ60MPlyQJSGlFKUaBVL1WgWR0CdlLOlwcYJdX2UKGgGaAloD0MIYsCSq1iKckCUhpRSlGgVS+poFkdAnZT6VY6nznV9lChoBmgJaA9DCBDmdi+3B3JAlIaUUpRoFUvuaBZHQJ2VZF6Rhc91fZQoaAZoCWgPQwiQMXctId5xQJSGlFKUaBVL+WgWR0CdlbERradudX2UKGgGaAloD0MI2QkvwWlhcECUhpRSlGgVS+hoFkdAnZYn+AEt/XV9lChoBmgJaA9DCJ6ymq4nH3BAlIaUUpRoFUv1aBZHQJ2WQXenAIp1fZQoaAZoCWgPQwiXH7jKE1lxQJSGlFKUaBVL3mgWR0CdmBVMmF8HdX2UKGgGaAloD0MImrD9ZAzJcUCUhpRSlGgVS9BoFkdAnZjbJKaodnV9lChoBmgJaA9DCCIa3UGsHnJAlIaUUpRoFUvzaBZHQJ2ZB6OYIB11fZQoaAZoCWgPQwjjbDoCODBuQJSGlFKUaBVL12gWR0CdmV3g1m8NdX2UKGgGaAloD0MIyXVTyuurb0CUhpRSlGgVS+FoFkdAnZmq68QI2XV9lChoBmgJaA9DCGd9yjHZMm1AlIaUUpRoFUvoaBZHQJ2Z/LvCuU51fZQoaAZoCWgPQwg7ONibmAtxQJSGlFKUaBVL7WgWR0CdmiV/tpmFdX2UKGgGaAloD0MIzzEge/3PcUCUhpRSlGgVS99oFkdAnZpXB55Z83V9lChoBmgJaA9DCJPJqZ0h13FAlIaUUpRoFUv3aBZHQJ2aqiVSn+B1fZQoaAZoCWgPQwg2Bp0Q+j5yQJSGlFKUaBVL1WgWR0Cdmyf51vETdX2UKGgGaAloD0MIRE5fz5eccUCUhpRSlGgVS/RoFkdAnZsoBaLXMHV9lChoBmgJaA9DCC2VtyPcJ3FAlIaUUpRoFUvxaBZHQJ2beyX2M851ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:851a76c4fd46521cf8077a788354e2d9de2146d9c48fec0c5ced66186222dacd
|
3 |
+
size 146595
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f552e6d0d30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f552e6d0dc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f552e6d0e50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f552e6d0ee0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f552e6d0f70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f552e6d6040>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f552e6d60d0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f552e6d6160>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f552e6d61f0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f552e6d6280>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f552e6d6310>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f552e6d4090>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 2015232,
|
46 |
+
"_total_timesteps": 2000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1672352883179506004,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNJDjw8ano+jLe6veqamr6FLk89EmJWvAAAAAAAAAAArUkzvj6NhT/1Y8q9IkIKv0exhr4em3Y9AAAAAAAAAABm7ku7rhmgukNSbjOCt8av38kgumoLyrMAAIA/AACAP4AQ7T0O9wc/ly+UvUrIur7/xqo9ogoJPAAAAAAAAAAAAHH8vFA9Oj+K/iU9BIPnvkJwoDyG5k88AAAAAAAAAABzPoM94oGKPxLJxT1R0hC//KSqPVz1rT0AAAAAAAAAAJojq7xsW6s/wz1svtp6/b5+mKO8p70lvgAAAAAAAAAAM7GnPOHgiLrAyBw4SQbIMlTfXzpiTDW3AACAPwAAgD971ae+HWwiP1ZrTz5VVMS+N2vVvcLmDT4AAAAAAAAAAABypjxuy4M96jgvvnqcZ74e8w693j+ZPAAAAAAAAAAAzXqvPeOqNj8muUo9H5IIvwoynz3ICT09AAAAAAAAAABaA5699sBUujdjzLkJVtO1joSeOzaT6zgAAAAAAAAAACBKAD6CPLc/+xMGP4qbc755+hA+mm2RPgAAAAAAAAAAFqWBvo7wqz9GEw6/itoOvwvo1L6yXey9AAAAAAAAAADAiAO+MgiWP9zrAb9aXiG/u7xvvjsCuL4AAAAAAAAAAObdpr321C66MAnGumN6VLaaAFw79inmOQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.007616000000000067,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVLBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbjKqDGMMcUCUhpRSlIwBbJRL5YwBdJRHQJ1haPwNLDh1fZQoaAZoCWgPQwjKbfse9dFyQJSGlFKUaBVL4WgWR0CdYnc5Ke05dX2UKGgGaAloD0MIdPBMaFIucUCUhpRSlGgVTScBaBZHQJ1ih0xM3611fZQoaAZoCWgPQwgRpiiXxk1wQJSGlFKUaBVNGAFoFkdAnWKQXhwVCXV9lChoBmgJaA9DCP0RhgHLnnFAlIaUUpRoFUvnaBZHQJ1jhp/PPcB1fZQoaAZoCWgPQwjUf9b8uBxyQJSGlFKUaBVL6mgWR0CdY7wsXizcdX2UKGgGaAloD0MIttYXCS2UcECUhpRSlGgVTRABaBZHQJ1klCTlkpZ1fZQoaAZoCWgPQwjTo6mezHRwQJSGlFKUaBVL+WgWR0CdZLol2NeddX2UKGgGaAloD0MIda4oJUREc0CUhpRSlGgVS9VoFkdAnWUA6hg3LnV9lChoBmgJaA9DCFgDlIaauXNAlIaUUpRoFU0LAWgWR0CdZSamXPZ7dX2UKGgGaAloD0MI1jVaDjQBckCUhpRSlGgVS85oFkdAnWU8L0BfbHV9lChoBmgJaA9DCJqUgm5v6HJAlIaUUpRoFUvIaBZHQJ1lU0DU3GZ1fZQoaAZoCWgPQwjZ6JyfIlhyQJSGlFKUaBVNgQFoFkdAnWV4phF3IXV9lChoBmgJaA9DCOFGyhZJj3JAlIaUUpRoFUvnaBZHQJ1lgaP0Zm91fZQoaAZoCWgPQwgb17/rM8s4QJSGlFKUaBVLtmgWR0CdZZ4AS39adX2UKGgGaAloD0MIq3XicvyLcECUhpRSlGgVS/VoFkdAnWeUmY0EYHV9lChoBmgJaA9DCEnyXN/HDHFAlIaUUpRoFUvWaBZHQJ1n29Zid8R1fZQoaAZoCWgPQwjZzYx+tOdxQJSGlFKUaBVL2mgWR0CdaAgfU4JedX2UKGgGaAloD0MIga/o1mtTUECUhpRSlGgVS5VoFkdAnWltdNWU8nV9lChoBmgJaA9DCHpvDAGALXFAlIaUUpRoFUvkaBZHQJ1pjAEdNnJ1fZQoaAZoCWgPQwidSZuqu3lyQJSGlFKUaBVNFgFoFkdAnWmurdWQwXV9lChoBmgJaA9DCNUkeENat3FAlIaUUpRoFU0BAWgWR0CdahPJaJQ+dX2UKGgGaAloD0MI29/ZHn0scUCUhpRSlGgVS+VoFkdAnWpojOcDsHV9lChoBmgJaA9DCDXwoxr2Um5AlIaUUpRoFUvQaBZHQJ1qcAQxveh1fZQoaAZoCWgPQwifWKfK99ZwQJSGlFKUaBVL4mgWR0Cdangx8D0UdX2UKGgGaAloD0MI6YGPwYo8bkCUhpRSlGgVS9FoFkdAnWqMTewcHXV9lChoBmgJaA9DCHsQAvIl025AlIaUUpRoFUviaBZHQJ1q/ORkmQd1fZQoaAZoCWgPQwhDVUylH8pvQJSGlFKUaBVL8GgWR0Cdav5B1LamdX2UKGgGaAloD0MIWp9yTBaPc0CUhpRSlGgVS/hoFkdAnWug2VE/jnV9lChoBmgJaA9DCG9nX3kQDHFAlIaUUpRoFU0BAWgWR0Cda8sYEW69dX2UKGgGaAloD0MI3jmUoeo/c0CUhpRSlGgVS/VoFkdAnW4JhKDkEXV9lChoBmgJaA9DCL5PVaFBR3FAlIaUUpRoFUvQaBZHQJ2BQ6T4cm11fZQoaAZoCWgPQwggm+RHPBpxQJSGlFKUaBVL1WgWR0CdgUkU9IPLdX2UKGgGaAloD0MIUmABTBnGU0CUhpRSlGgVS7NoFkdAnYFYaLn9vXV9lChoBmgJaA9DCAppjUEnrXFAlIaUUpRoFU0fAWgWR0CdgW938n/ldX2UKGgGaAloD0MIJgFqahnScECUhpRSlGgVS9ZoFkdAnYGVM7EHdHV9lChoBmgJaA9DCAaf5uRFyWxAlIaUUpRoFUveaBZHQJ2CnUd7v5R1fZQoaAZoCWgPQwgUIuAQqqlvQJSGlFKUaBVLymgWR0Cdgr6Y3Ns4dX2UKGgGaAloD0MIuKzCZgB1b0CUhpRSlGgVS/doFkdAnYL7WiDdxnV9lChoBmgJaA9DCGSRJt6Bq29AlIaUUpRoFUvraBZHQJ2DGUUwi7l1fZQoaAZoCWgPQwhxdmuZzI1yQJSGlFKUaBVL5WgWR0Cdg5AWzniedX2UKGgGaAloD0MI9rNYiqSxcECUhpRSlGgVS89oFkdAnYPKz3RG+nV9lChoBmgJaA9DCH/5ZMXwiXJAlIaUUpRoFU0OAWgWR0Cdg/850bLmdX2UKGgGaAloD0MINXo1QGlxcECUhpRSlGgVS95oFkdAnYRphF3IMnV9lChoBmgJaA9DCEUuOIP/J3BAlIaUUpRoFUvJaBZHQJ2HMSxqwhZ1fZQoaAZoCWgPQwjOxkrM8zJxQJSGlFKUaBVL62gWR0Cdh4Kk2xY8dX2UKGgGaAloD0MIf2snSgILcUCUhpRSlGgVS9poFkdAnYeWvOhTO3V9lChoBmgJaA9DCAtfX+tSq3FAlIaUUpRoFUvtaBZHQJ2IIb2lEZ11fZQoaAZoCWgPQwhl4ICWbhpyQJSGlFKUaBVL/WgWR0CdiKXlbNbDdX2UKGgGaAloD0MIa5p3nKKub0CUhpRSlGgVS9BoFkdAnYjHmV7hN3V9lChoBmgJaA9DCCl1yThGtXFAlIaUUpRoFUv+aBZHQJ2I73QD3dt1fZQoaAZoCWgPQwiD+MCOv2NwQJSGlFKUaBVL22gWR0CdiPyaNMoMdX2UKGgGaAloD0MI6UfDKfOobkCUhpRSlGgVS9NoFkdAnYkz238XN3V9lChoBmgJaA9DCCmwAKYMiFlAlIaUUpRoFU3oA2gWR0CdiVN70Fr3dX2UKGgGaAloD0MIPStpxTeScUCUhpRSlGgVS8poFkdAnYlcTrVvuXV9lChoBmgJaA9DCHam0HlNTnFAlIaUUpRoFUvpaBZHQJ2Jmc9W6sh1fZQoaAZoCWgPQwiD+StkLtxwQJSGlFKUaBVLy2gWR0CdibHPNVzZdX2UKGgGaAloD0MIibFMv8R1b0CUhpRSlGgVS9doFkdAnYnMNUfgaXV9lChoBmgJaA9DCBAIdCZte29AlIaUUpRoFUv7aBZHQJ2K/1VYISl1fZQoaAZoCWgPQwiLUdfae/BtQJSGlFKUaBVL1WgWR0CdjMS2H+IedX2UKGgGaAloD0MIPUhPkcP7ckCUhpRSlGgVS+xoFkdAnY1/LcKw6nV9lChoBmgJaA9DCPmDgeee/3JAlIaUUpRoFUvLaBZHQJ2N9mh/RVp1fZQoaAZoCWgPQwi1iv7QzNBuQJSGlFKUaBVL2mgWR0CdjhMKCxu9dX2UKGgGaAloD0MILAyR09cIbkCUhpRSlGgVTRABaBZHQJ2ON8Ti84B1fZQoaAZoCWgPQwhvn1VmSoJzQJSGlFKUaBVL82gWR0CdjkXpnpSrdX2UKGgGaAloD0MIFceBV0vCcECUhpRSlGgVS9FoFkdAnY5cdgfEGnV9lChoBmgJaA9DCP0VMlfGHHBAlIaUUpRoFUvVaBZHQJ2OkCgbp/x1fZQoaAZoCWgPQwgVjiCVImZyQJSGlFKUaBVL7WgWR0CdjqdwNsnBdX2UKGgGaAloD0MITUpBt5dnc0CUhpRSlGgVS+1oFkdAnY8h1cMVlHV9lChoBmgJaA9DCOeNk8I8VnJAlIaUUpRoFU0GAWgWR0Cdj1UKArhBdX2UKGgGaAloD0MIUIvBw/R2cUCUhpRSlGgVS+9oFkdAnY9zDn/1hHV9lChoBmgJaA9DCEhrDDohuW5AlIaUUpRoFUvtaBZHQJ2Pgg5imVJ1fZQoaAZoCWgPQwjfNlMhnoxxQJSGlFKUaBVLymgWR0CdkCmmLtNSdX2UKGgGaAloD0MIaYzWURWLcUCUhpRSlGgVTQ0BaBZHQJ2QWaTfR/p1fZQoaAZoCWgPQwgWwf9W8jZyQJSGlFKUaBVL52gWR0Cdkn/47A+IdX2UKGgGaAloD0MIblFmgwwKcUCUhpRSlGgVS8loFkdAnZLO5jH4oXV9lChoBmgJaA9DCHh8e9cgJHFAlIaUUpRoFUv2aBZHQJ2TrKB/Zuh1fZQoaAZoCWgPQwiIvruVpXlwQJSGlFKUaBVL5mgWR0Cdk/pkwvg4dX2UKGgGaAloD0MIqgzjbpDqbkCUhpRSlGgVS9doFkdAnZQE0SAYpHV9lChoBmgJaA9DCKJgxhTsZHJAlIaUUpRoFUvgaBZHQJ2UJ2IO6NF1fZQoaAZoCWgPQwjeVnptdjJwQJSGlFKUaBVL6mgWR0CdlC+x4Y78dX2UKGgGaAloD0MIa9PYXotaZkCUhpRSlGgVTegDaBZHQJ2Ud7XxvvV1fZQoaAZoCWgPQwjeAZ60MPlyQJSGlFKUaBVL1WgWR0CdlLOlwcYJdX2UKGgGaAloD0MIYsCSq1iKckCUhpRSlGgVS+poFkdAnZT6VY6nznV9lChoBmgJaA9DCBDmdi+3B3JAlIaUUpRoFUvuaBZHQJ2VZF6Rhc91fZQoaAZoCWgPQwiQMXctId5xQJSGlFKUaBVL+WgWR0CdlbERradudX2UKGgGaAloD0MI2QkvwWlhcECUhpRSlGgVS+hoFkdAnZYn+AEt/XV9lChoBmgJaA9DCJ6ymq4nH3BAlIaUUpRoFUv1aBZHQJ2WQXenAIp1fZQoaAZoCWgPQwiXH7jKE1lxQJSGlFKUaBVL3mgWR0CdmBVMmF8HdX2UKGgGaAloD0MImrD9ZAzJcUCUhpRSlGgVS9BoFkdAnZjbJKaodnV9lChoBmgJaA9DCCIa3UGsHnJAlIaUUpRoFUvzaBZHQJ2ZB6OYIB11fZQoaAZoCWgPQwjjbDoCODBuQJSGlFKUaBVL12gWR0CdmV3g1m8NdX2UKGgGaAloD0MIyXVTyuurb0CUhpRSlGgVS+FoFkdAnZmq68QI2XV9lChoBmgJaA9DCGd9yjHZMm1AlIaUUpRoFUvoaBZHQJ2Z/LvCuU51fZQoaAZoCWgPQwg7ONibmAtxQJSGlFKUaBVL7WgWR0CdmiV/tpmFdX2UKGgGaAloD0MIzzEge/3PcUCUhpRSlGgVS99oFkdAnZpXB55Z83V9lChoBmgJaA9DCJPJqZ0h13FAlIaUUpRoFUv3aBZHQJ2aqiVSn+B1fZQoaAZoCWgPQwg2Bp0Q+j5yQJSGlFKUaBVL1WgWR0Cdmyf51vETdX2UKGgGaAloD0MIRE5fz5eccUCUhpRSlGgVS/RoFkdAnZsoBaLXMHV9lChoBmgJaA9DCC2VtyPcJ3FAlIaUUpRoFUvxaBZHQJ2beyX2M851ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 492,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a9777c9a36d3f37107795d3cd830606dacf37ad0046663e8b150ff62b11f027
|
3 |
+
size 87545
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f6671f7f1f9b9ea11aa52c2fd71a098ff2eecaca9e8f7096e4561c58445d426
|
3 |
+
size 43073
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (212 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 267.1709995053829, "std_reward": 18.46821695268033, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-29T23:55:50.747365"}
|