--- license: llama3.2 language: - en - de - fr - it - pt - hi - es - th base_model: - meta-llama/Llama-3.2-1B-Instruct pipeline_tag: text-generation tags: - gptqmodel - modelcloud - llama3.2 - instruct - int4 --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/641c13e7999935676ec7bc03/q9O_-bEwpsVQk-sFc-M9N.png) This model has been quantized using [GPTQModel](https://github.com/ModelCloud/GPTQModel). - **bits**: 4 - **dynamic**: null - **group_size**: 32 - **desc_act**: true - **static_groups**: false - **sym**: true - **lm_head**: false - **true_sequential**: true - **quant_method**: "gptq" - **checkpoint_format**: "gptq" - **meta**: - **quantizer**: gptqmodel:1.1.0 - **uri**: https://github.com/modelcloud/gptqmodel - **damp_percent**: 0.1 - **damp_auto_increment**: 0.0015 ## Example: ```python from transformers import AutoTokenizer from gptqmodel import GPTQModel model_name = "ModelCloud/Llama-3.2-1B-Instruct-gptqmodel-4bit-vortex-v1" tokenizer = AutoTokenizer.from_pretrained(model_name) model = GPTQModel.from_quantized(model_name) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") outputs = model.generate(input_ids=input_tensor.to(model.device), max_new_tokens=512) result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True) print(result) ```