File size: 1,904 Bytes
fe4b924 00ad009 fe4b924 58b9cee 7ae0e6e 66b6068 fe4b924 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
license: apache-2.0
license_link: https://huggingface.co/Qwen/QwQ-32B-Preview/blob/main/LICENSE
language:
- en
base_model:
- Qwen/QwQ-32B-Preview
pipeline_tag: text-generation
tags:
- gptqmodel
- modelcloud
- chat
- qwen2
- qwq
- instruct
- int4
- gptq
- 4bit
---
## 🐛 Update: We have discovered a regression in the QwQ quant that may output extra strings such as "Edited Text" that was result of invalid calibration data auto-injected by our vortex pipeline. v2 of the quant is undergoing benchmark evaluations and will be released soon.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/641c13e7999935676ec7bc03/NV7rN-pih5sApVOZeDXSJ.png)
This model has been quantized using [GPTQModel](https://github.com/ModelCloud/GPTQModel).
- **bits**: 4
- **dynamic**: null
- **group_size**: 32
- **desc_act**: true
- **static_groups**: false
- **sym**: true
- **lm_head**: false
- **true_sequential**: true
- **quant_method**: "gptq"
- **checkpoint_format**: "gptq"
- **meta**:
- **quantizer**: gptqmodel:1.2.2
- **uri**: https://github.com/modelcloud/gptqmodel
- **damp_percent**: 0.1
- **damp_auto_increment**: 0.0015
## Example:
```python
from transformers import AutoTokenizer
from gptqmodel import GPTQModel
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = GPTQModel.load("ModelCloud/QwQ-32B-Preview-GPTQ-4bit")
messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": "How can I design a data structure in C++ to store the top 5 largest integer numbers?"},
]
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(input_ids=input_tensor.to(model.device), max_new_tokens=512)
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
print(result)
``` |