File size: 10,796 Bytes
f66f594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
"""Dbrx configuration."""
from typing import Any, Optional

from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging

logger = logging.get_logger(__name__)

DBRX_PRETRAINED_CONFIG_ARCHIVE_MAP = {}


class DbrxAttentionConfig(PretrainedConfig):
    """Configuration class for Dbrx Attention.

    [`DbrxAttention`] class. It is used to instantiate attention layers
    according to the specified arguments, defining the layers architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        attn_pdrop (`float`, *optional*, defaults to 0.0):
            The dropout probability for the attention layers.
        clip_qkv (`float`, *optional*, defualts to None):
            If not `None`, clip the queries, keys, and values in the attention layer to this value.
        kv_n_heads (Optional[int]): For grouped_query_attention only, allow user to specify number of kv heads.
        rope_theta (float): The base frequency for rope.
    """

    def __init__(
        self,
        attn_pdrop: float = 0,
        clip_qkv: Optional[float] = None,
        kv_n_heads: int = 1,
        rope_theta: float = 10000.0,
        **kwargs: Any,
    ):
        super().__init__(**kwargs)
        self.attn_pdrop = attn_pdrop
        self.clip_qkv = clip_qkv
        self.kv_n_heads = kv_n_heads
        self.rope_theta = rope_theta

        for k in ['model_type']:
            if k in kwargs:
                kwargs.pop(k)
        if len(kwargs) != 0:
            raise ValueError(f'Found unknown {kwargs=}')

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: str,
                        **kwargs: Any) -> 'PretrainedConfig':
        cls._set_token_in_kwargs(kwargs)

        config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path,
                                                  **kwargs)

        if config_dict.get('model_type') == 'dbrx':
            config_dict = config_dict['attn_config']

        if 'model_type' in config_dict and hasattr(
                cls,
                'model_type') and config_dict['model_type'] != cls.model_type:
            logger.warning(
                f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
                +
                f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
            )

        return cls.from_dict(config_dict, **kwargs)


class DbrxFFNConfig(PretrainedConfig):
    """Configuration class for Dbrx FFN.

    [`DbrxFFN`] class. It is used to instantiate feedforward layers according to
    the specified arguments, defining the layers architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        ffn_act_fn (dict, optional): A dict specifying activation function for the FFN.
            The dict should have a key 'name' with the value being the name of
            the activation function along with any additional keyword arguments.
        ffn_hidden_size (int, optional): The hidden size of the feedforward network.
        moe_num_experts (int, optional): The number of experts in the mixture of experts layer.
        moe_top_k (int, optional): The number of experts to use in the mixture of experts layer.
        moe_jitter_eps (float, optional): The jitter epsilon for the mixture of experts layer.
        moe_loss_weight (float, optional): The loss weight for the mixture of experts layer.
        moe_normalize_expert_weights (float, optional): The normalization factor for the expert weights.
        uniform_expert_assignment (bool, optional): Whether to use uniform expert assignment.
            This should only be used for benchmarking purposes.
    """

    def __init__(
        self,
        ffn_act_fn: Optional[dict] = None,
        ffn_hidden_size: int = 3584,
        moe_num_experts: int = 4,
        moe_top_k: int = 1,
        moe_jitter_eps: Optional[float] = None,
        moe_loss_weight: float = 0.01,
        moe_normalize_expert_weights: Optional[float] = 1,
        uniform_expert_assignment: bool = False,
        **kwargs: Any,
    ):
        super().__init__()
        if ffn_act_fn is None:
            ffn_act_fn = {'name': 'silu'}
        self.ffn_act_fn = ffn_act_fn
        self.ffn_hidden_size = ffn_hidden_size
        self.moe_num_experts = moe_num_experts
        self.moe_top_k = moe_top_k
        self.moe_jitter_eps = moe_jitter_eps
        self.moe_loss_weight = moe_loss_weight
        self.moe_normalize_expert_weights = moe_normalize_expert_weights
        self.uniform_expert_assignment = uniform_expert_assignment

        for k in ['model_type']:
            if k in kwargs:
                kwargs.pop(k)
        if len(kwargs) != 0:
            raise ValueError(f'Found unknown {kwargs=}')

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: str,
                        **kwargs: Any) -> 'PretrainedConfig':
        cls._set_token_in_kwargs(kwargs)

        config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path,
                                                  **kwargs)

        if config_dict.get('model_type') == 'dbrx':
            config_dict = config_dict['ffn_config']

        if 'model_type' in config_dict and hasattr(
                cls,
                'model_type') and config_dict['model_type'] != cls.model_type:
            logger.warning(
                f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
                +
                f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
            )

        return cls.from_dict(config_dict, **kwargs)


class DbrxConfig(PretrainedConfig):
    """Configuration class for Dbrx.

    [`DbrxModel`]. It is used to instantiate a Dbrx model according to the
    specified arguments, defining the model architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        d_model (`int`, *optional*, defaults to 6144):
            Dimensionality of the embeddings and hidden states.
        n_heads (`int`, *optional*, defaults to 48):
            Number of attention heads for each attention layer in the Transformer encoder.
        n_layers (`int`, *optional*, defaults to 40):
            Number of hidden layers in the Transformer encoder.
        max_seq_len (`int`, *optional*, defaults to 32768):
            The maximum sequence length of the model.
        vocab_size (`int`, *optional*, defaults to 100352):
            Vocabulary size of the Dbrx model. Defines the maximum number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`DbrxModel`].
        resid_pdrop (`float`, *optional*, defaults to 0.0):
            The dropout probability applied to the attention output before combining with residual.
        emb_pdrop (`float`, *optional*, defaults to 0.0):
            The dropout probability for the embedding layer.
        attn_config (`dict`, *optional*):
            A dictionary used to configure the model's attention module.
        ffn_config (`dict`, *optional*):
            A dictionary used to configure the model's FFN module.
        use_cache (`bool`, *optional*, defaults to `False`):
            Whether or not the model should return the last key/values attentions (not used by all models).
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        output_router_logits (`bool`, *optional*, defaults to `False`):
            Whether or not the router logits should be returned by the model. Enabling this will also
            allow the model to output the auxiliary loss. See [here]() for more details
        router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
            The aux loss factor for the total loss.


    Example:
    ```python
    >>> from transformers import DbrxConfig, DbrxModel

    >>> # Initializing a Dbrx configuration
    >>> configuration = DbrxConfig()

    >>> # Initializing a model (with random weights) from the configuration
    >>> model = DbrxModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
    """

    model_type = 'dbrx'
    attribute_map = {
        'num_attention_heads': 'n_heads',
        'hidden_size': 'd_model',
        'num_hidden_layers': 'n_layers',
        'max_position_embeddings': 'max_seq_len'
    }

    def __init__(
        self,
        d_model: int = 2048,
        n_heads: int = 16,
        n_layers: int = 24,
        max_seq_len: int = 2048,
        vocab_size: int = 32000,
        resid_pdrop: float = 0.0,
        emb_pdrop: float = 0.0,
        attn_config: Optional[DbrxAttentionConfig] = None,
        ffn_config: Optional[DbrxFFNConfig] = None,
        use_cache: bool = True,
        initializer_range: float = 0.02,
        output_router_logits: bool = False,
        router_aux_loss_coef: float = 0.05,
        **kwargs: Any,
    ):
        if attn_config is None:
            self.attn_config = DbrxAttentionConfig()
        elif isinstance(attn_config, dict):
            self.attn_config = DbrxAttentionConfig(**attn_config)
        else:
            self.attn_config = attn_config

        if ffn_config is None:
            self.ffn_config = DbrxFFNConfig()
        elif isinstance(ffn_config, dict):
            self.ffn_config = DbrxFFNConfig(**ffn_config)
        else:
            self.ffn_config = ffn_config

        self.d_model = d_model
        self.n_heads = n_heads
        self.n_layers = n_layers
        self.max_seq_len = max_seq_len
        self.vocab_size = vocab_size
        self.resid_pdrop = resid_pdrop
        self.emb_pdrop = emb_pdrop
        self.use_cache = use_cache
        self.initializer_range = initializer_range
        self.output_router_logits = output_router_logits
        self.router_aux_loss_coef = router_aux_loss_coef

        tie_word_embeddings = kwargs.pop('tie_word_embeddings', False)
        if tie_word_embeddings:
            raise ValueError(
                'tie_word_embeddings is not supported for Dbrx models.')

        super().__init__(
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )