--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: emotiscan_model_2 results: [] --- # emotiscan_model_2 This model is a fine-tuned version of [google-bert/bert-large-uncased](https://huggingface.co/google-bert/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5213 - Accuracy: 0.8184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.4986 | 1.0 | 4157 | 0.4979 | 0.8194 | | 0.453 | 2.0 | 8315 | 0.4985 | 0.8200 | | 0.4098 | 3.0 | 12471 | 0.5213 | 0.8184 | ### Framework versions - Transformers 4.29.0 - Pytorch 2.1.2 - Datasets 2.14.6 - Tokenizers 0.13.3