Commit
·
6ffe992
1
Parent(s):
b6e8193
First RL trained agent
Browse files- First-RL-Model.zip +3 -0
- First-RL-Model/_stable_baselines3_version +1 -0
- First-RL-Model/data +99 -0
- First-RL-Model/policy.optimizer.pth +3 -0
- First-RL-Model/policy.pth +3 -0
- First-RL-Model/pytorch_variables.pth +3 -0
- First-RL-Model/system_info.txt +9 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
First-RL-Model.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e6ca34d930e4e0a03f1c1dd1afb358b7e6a8aa7d7b1c5e00cbc1627247fbffc
|
3 |
+
size 146737
|
First-RL-Model/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
First-RL-Model/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7c83e61360e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c83e6136170>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c83e6136200>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c83e6136290>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7c83e6136320>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7c83e61363b0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7c83e6136440>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c83e61364d0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7c83e6136560>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c83e61365f0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c83e6136680>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7c83e6136710>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c83e6140b80>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1690543946168123123,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFq1vj3Tr7o/IvXoPo52A775Tw+8CZoIPgAAAAAAAAAAGrAMvUNlST0wIdM7iUM6vuxLtTzsZKe9AAAAAAAAAABT5B0+h3ZqP0pWOj2G2sy+JSMVPha8tLwAAAAAAAAAADPPbr0AZq4+peTXPG1lc74Q85C8lc7nPAAAAAAAAAAAAPeTvK5ZsbqBK7+9V729N7JNh7qjRCm3AACAPwAAgD/AmEi+dCghPqK4Az5762e+H09UPHr2lb0AAAAAAAAAAJozurxsN8o8TYA3vuRhaL5dyrm92mEePAAAAAAAAAAAU9R7PrjkgD9mCHA+e3Xyvv8Jsz6L4Ws8AAAAAAAAAADNZ0Q+7eauP8GdyT6L1gK/y7IvPqo5Pz4AAAAAAAAAAFrGo73XxNg+4pJtPK5/c75ihr+8/XzjvQAAAAAAAAAAGr2xvbh+wD9Mbh+/4PsiPhTMmDxm/yC+AAAAAAAAAAAArl++SIN9P1uGBD0NUtq+eoqAvqLNST4AAAAAAAAAAJr5OztKNZI/RhkYO3nF5L4txSM94gzgvAAAAAAAAAAAms6UPbqKZT6jRSG+BCwnviWaPb0EmIC8AAAAAAAAAAANdSg+l9oUPyK4HL6/dtS+ZYQcvdINBr4AAAAAAAAAAACi2D3zQOA+QxeQvTGCt77PoKi8ImC5vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFAnzch1TzeMAWyUS9CMAXSUR0Cup3mCZnctdX2UKGgGR0ByeGyKNyYHaAdNKAFoCEdArqfIKQaJh3V9lChoBkdAcPsYSg5BC2gHS+1oCEdArqi/fKp1inV9lChoBkdAcbZS6lLvkWgHTSwBaAhHQK6oxneSB9V1fZQoaAZHQHHoE2xY7q9oB00AAWgIR0CuqRly7wrldX2UKGgGR0ByFVrSE12raAdNFAFoCEdArql/NNahYnV9lChoBkdAcau0eEIw/WgHS/FoCEdArqoJT2nKn3V9lChoBkdAc4uDF6zE8GgHTQoBaAhHQK6qms052hZ1fZQoaAZHQHG5IrFwT/RoB00yAWgIR0CuqqdS2phndX2UKGgGR0BxH92ECeVcaAdNOAFoCEdArqsUd1dPcnV9lChoBkdAcOo7GNrCWWgHTTgBaAhHQK6rQnx8UmF1fZQoaAZHQHC+Kwt8NQVoB003AWgIR0Cuq0DcuanadX2UKGgGR0ByATrcCYCyaAdL4GgIR0Cuq1g4XGfgdX2UKGgGR0Bucb1TR6WxaAdNJgFoCEdArqvlH8TBZnV9lChoBkdAb+QeT3Zf2WgHTTUBaAhHQK6r+j8k2P11fZQoaAZHQGDFOtwJgLJoB03oA2gIR0CurAIgmqo7dX2UKGgGR0BykfyjHn2aaAdNMgFoCEdArqwzGLk0anV9lChoBkdAccg1p0wJxGgHTTIBaAhHQK6sM1PWQOp1fZQoaAZHQHLqKOPvKEFoB00EAWgIR0CurLykj5bhdX2UKGgGR0BwrOK1og3caAdNBgFoCEdArqzJSDRMOHV9lChoBkdAbnnoq0+kg2gHTQ0BaAhHQK6tIn/kvK51fZQoaAZHQHC/s/pt78hoB00UAWgIR0CurZV+RYA9dX2UKGgGR0ByxPjm0VrRaAdLy2gIR0Curdkx7AtWdX2UKGgGR0Byq5I5HVgAaAdNJwFoCEdArq5XepGWlnV9lChoBkdAccKiKziS72gHTSIBaAhHQK6u1DArQPZ1fZQoaAZHQHDIXcHnln1oB00DAWgIR0CurunGbTc7dX2UKGgGR0ByX90dRzikaAdNCAFoCEdArq77PjXFtXV9lChoBkdAcOIRAKOT7mgHTToBaAhHQK6vJmCiAUd1fZQoaAZHQHH9Kpo9LYhoB0vvaAhHQK6vU+r2g391fZQoaAZHQHED6ews5GVoB00rAWgIR0Cur5KTbFjvdX2UKGgGR0BvKwku6ErYaAdNEAFoCEdArq/F38n/k3V9lChoBkdAcGT68g6ltWgHTRYBaAhHQK6wFIhhYvF1fZQoaAZHQHCZ3/Pw/gRoB00cAWgIR0CusCuNPxhEdX2UKGgGR0BtfI8GLUCraAdNCwFoCEdArrCS5qdpZnV9lChoBkdAbgRNC7btZ2gHTVUBaAhHQK6wqhFEy+J1fZQoaAZHQG5naKcd5ptoB00RAWgIR0CusRGgBcRldX2UKGgGR0BvC9tGd7OWaAdNBwFoCEdArrFr/2kBS3V9lChoBkdAcsvwA2hqTWgHTVgBaAhHQK6xoGRFI/Z1fZQoaAZHQHEhdozvZyxoB00TAWgIR0Cusd/BN21VdX2UKGgGR0ByABBa9sabaAdNLQFoCEdArru0m4RVZXV9lChoBkdAc0SDrJKaomgHTQ0BaAhHQK67vBSDRMN1fZQoaAZHQHHmJJPIn0FoB00XAWgIR0Cuu9fS6UaAdX2UKGgGR0BsfgWHk92YaAdNMAFoCEdArrymMdcSoXV9lChoBkdAcXe/sE7nxWgHTRwBaAhHQK68yi1RceN1fZQoaAZHQHECEXgtOEdoB00pAWgIR0CuvNAZjx0/dX2UKGgGR0ByHwZbY9PlaAdNJgFoCEdArr1jidat93V9lChoBkdAb+VzV+Zw42gHTRsBaAhHQK69eaNuLrJ1fZQoaAZHQG/LY5tFa0RoB00ZAWgIR0CuveMl9jPOdX2UKGgGR0BxG1uk1uR+aAdNIwFoCEdArr4hiAlOXXV9lChoBkdAcMBQDV6NVGgHTQ0BaAhHQK6+T37DVH51fZQoaAZHQHPmzvRZ2ZBoB0v3aAhHQK6+ZFkQPI51fZQoaAZHQHDc9vS+g15oB00nAWgIR0Cuvo9FnZkDdX2UKGgGR0Bwo71VYISlaAdL82gIR0CuvqYgJTl1dX2UKGgGR0BxKleSjgyeaAdL62gIR0CuvrcD8tPIdX2UKGgGR0BymwQSSNfgaAdNFQFoCEdArr9/2EkB0nV9lChoBkdAcC8ZvkzXSWgHTQcBaAhHQK7ATOk+HJt1fZQoaAZHQG9M9UsFt9BoB00XAWgIR0CuwH3PiT+vdX2UKGgGR0BwLQcghbGFaAdNDAFoCEdArsD3os7MgXV9lChoBkdAcoZj7ALy+mgHTQcBaAhHQK7A+A80UGp1fZQoaAZHQHJvo68xsVNoB0vbaAhHQK7BD2IwdsB1fZQoaAZHQHIabpNbkfdoB00cAWgIR0CuwVaKUFB6dX2UKGgGR0BwqlOdoWYXaAdNIAFoCEdArsHWDlHSW3V9lChoBkdAcK84W1twaWgHTXEBaAhHQK7CADFId2h1fZQoaAZHQHEKxT4tYjloB00wAWgIR0CuwiY7JW/8dX2UKGgGR0BxQMophF3IaAdNCQFoCEdArsJQv+OwPnV9lChoBkdAbzbyUcGTtGgHTR4BaAhHQK7CbKujh1l1fZQoaAZHQHDichxHXmNoB00RAWgIR0CuwoH0se4kdX2UKGgGR0ByMuSA6MisaAdL+GgIR0Cuwog5q/M4dX2UKGgGR0Bwou40/GEPaAdNPAFoCEdArsNaxeLNwHV9lChoBkdAcOJDDCP6sWgHTU4BaAhHQK7Dg9vjwQV1fZQoaAZHQHMfZ2+wkgRoB00lAWgIR0Cuw/1HvttzdX2UKGgGR0Btm7MibDuSaAdNFwFoCEdArsSZc7hegXV9lChoBkdAcekVjZtelmgHS/loCEdArsS+hAWznnV9lChoBkdAcTGBV+7UX2gHTSYBaAhHQK7FAuUUwi91fZQoaAZHQG9SfNA1NxloB00OAWgIR0CuxSr2HtWudX2UKGgGR0By7BXV9Wp7aAdNDgFoCEdArsVnV3EAHXV9lChoBkdAcYsnTiKiwmgHS/xoCEdArsWV8XvYvnV9lChoBkdAcD640/GEPGgHTS8BaAhHQK7Fl4u9OAR1fZQoaAZHQHCNFk+X7choB0vxaAhHQK7FslF+d9V1fZQoaAZHQHE+MBIWgvloB0v8aAhHQK7F+lnAZbZ1fZQoaAZHQG3rbDMvAXVoB00qAWgIR0Cuxk2SEDhcdX2UKGgGR0ByAIQpWmxdaAdNEgFoCEdArsZdPnB+F3V9lChoBkdAcjaJtix3V2gHTSQBaAhHQK7Gr0dRzil1fZQoaAZHQHKNXd43WFxoB00oAWgIR0CuxsHdO6/ZdX2UKGgGR0BxkjMcIZ62aAdNDwFoCEdArsc/TRYzSHV9lChoBkdAbvHtaY/mkmgHTRoBaAhHQK7HlA/s3Q51fZQoaAZHQG1Gi0ngHeJoB00pAWgIR0CuyFdc0LtvdX2UKGgGR0BxijkDIRywaAdNDwFoCEdArsi5Ktga33V9lChoBkdAbp9HyVfNRmgHTQgBaAhHQK7I54zrNW51fZQoaAZHQG5iW9+PRzBoB00sAWgIR0CuyRXg1m8NdX2UKGgGR0Bx1hGOMl1KaAdNDQFoCEdArskoT7EYO3V9lChoBkdAcITQ/5ckdGgHTQIBaAhHQK7JNj81n/V1fZQoaAZHQHBjavaDf3xoB00UAWgIR0Cuya6GpMpPdX2UKGgGR0BwCoztTkyUaAdNDwFoCEdArsoMAWBSUHV9lChoBkdAbqOQWepXIWgHTSgBaAhHQK7KGMx46fd1fZQoaAZHQHBlfO+qR2doB01DAWgIR0Cuyl9I5HVgdX2UKGgGR0Bu6pjtoi9qaAdNDgFoCEdArsp4uRLbpXV9lChoBkdAcErTefqX4WgHTQABaAhHQK7KsAI6bON1fZQoaAZHQHB+IxYaHbhoB00OAWgIR0CuysngHeJpdX2UKGgGR0BvYPgaWHDaaAdNMAFoCEdArsrYHE/B33VlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
First-RL-Model/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a8dfa6537d4d776360f3903e4d7b40c09be68cd1d083341e5c84ca2e0842f3e
|
3 |
+
size 87929
|
First-RL-Model/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef46998b107b7b0f9079a95f1b82f6890eccea458d602288143bde711a361782
|
3 |
+
size 43329
|
First-RL-Model/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
First-RL-Model/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 263.86 +/- 15.16
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c83e61360e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c83e6136170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c83e6136200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c83e6136290>", "_build": "<function ActorCriticPolicy._build at 0x7c83e6136320>", "forward": "<function ActorCriticPolicy.forward at 0x7c83e61363b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c83e6136440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c83e61364d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7c83e6136560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c83e61365f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c83e6136680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c83e6136710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c83e6140b80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690543946168123123, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFq1vj3Tr7o/IvXoPo52A775Tw+8CZoIPgAAAAAAAAAAGrAMvUNlST0wIdM7iUM6vuxLtTzsZKe9AAAAAAAAAABT5B0+h3ZqP0pWOj2G2sy+JSMVPha8tLwAAAAAAAAAADPPbr0AZq4+peTXPG1lc74Q85C8lc7nPAAAAAAAAAAAAPeTvK5ZsbqBK7+9V729N7JNh7qjRCm3AACAPwAAgD/AmEi+dCghPqK4Az5762e+H09UPHr2lb0AAAAAAAAAAJozurxsN8o8TYA3vuRhaL5dyrm92mEePAAAAAAAAAAAU9R7PrjkgD9mCHA+e3Xyvv8Jsz6L4Ws8AAAAAAAAAADNZ0Q+7eauP8GdyT6L1gK/y7IvPqo5Pz4AAAAAAAAAAFrGo73XxNg+4pJtPK5/c75ihr+8/XzjvQAAAAAAAAAAGr2xvbh+wD9Mbh+/4PsiPhTMmDxm/yC+AAAAAAAAAAAArl++SIN9P1uGBD0NUtq+eoqAvqLNST4AAAAAAAAAAJr5OztKNZI/RhkYO3nF5L4txSM94gzgvAAAAAAAAAAAms6UPbqKZT6jRSG+BCwnviWaPb0EmIC8AAAAAAAAAAANdSg+l9oUPyK4HL6/dtS+ZYQcvdINBr4AAAAAAAAAAACi2D3zQOA+QxeQvTGCt77PoKi8ImC5vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFAnzch1TzeMAWyUS9CMAXSUR0Cup3mCZnctdX2UKGgGR0ByeGyKNyYHaAdNKAFoCEdArqfIKQaJh3V9lChoBkdAcPsYSg5BC2gHS+1oCEdArqi/fKp1inV9lChoBkdAcbZS6lLvkWgHTSwBaAhHQK6oxneSB9V1fZQoaAZHQHHoE2xY7q9oB00AAWgIR0CuqRly7wrldX2UKGgGR0ByFVrSE12raAdNFAFoCEdArql/NNahYnV9lChoBkdAcau0eEIw/WgHS/FoCEdArqoJT2nKn3V9lChoBkdAc4uDF6zE8GgHTQoBaAhHQK6qms052hZ1fZQoaAZHQHG5IrFwT/RoB00yAWgIR0CuqqdS2phndX2UKGgGR0BxH92ECeVcaAdNOAFoCEdArqsUd1dPcnV9lChoBkdAcOo7GNrCWWgHTTgBaAhHQK6rQnx8UmF1fZQoaAZHQHC+Kwt8NQVoB003AWgIR0Cuq0DcuanadX2UKGgGR0ByATrcCYCyaAdL4GgIR0Cuq1g4XGfgdX2UKGgGR0Bucb1TR6WxaAdNJgFoCEdArqvlH8TBZnV9lChoBkdAb+QeT3Zf2WgHTTUBaAhHQK6r+j8k2P11fZQoaAZHQGDFOtwJgLJoB03oA2gIR0CurAIgmqo7dX2UKGgGR0BykfyjHn2aaAdNMgFoCEdArqwzGLk0anV9lChoBkdAccg1p0wJxGgHTTIBaAhHQK6sM1PWQOp1fZQoaAZHQHLqKOPvKEFoB00EAWgIR0CurLykj5bhdX2UKGgGR0BwrOK1og3caAdNBgFoCEdArqzJSDRMOHV9lChoBkdAbnnoq0+kg2gHTQ0BaAhHQK6tIn/kvK51fZQoaAZHQHC/s/pt78hoB00UAWgIR0CurZV+RYA9dX2UKGgGR0ByxPjm0VrRaAdLy2gIR0Curdkx7AtWdX2UKGgGR0Byq5I5HVgAaAdNJwFoCEdArq5XepGWlnV9lChoBkdAccKiKziS72gHTSIBaAhHQK6u1DArQPZ1fZQoaAZHQHDIXcHnln1oB00DAWgIR0CurunGbTc7dX2UKGgGR0ByX90dRzikaAdNCAFoCEdArq77PjXFtXV9lChoBkdAcOIRAKOT7mgHTToBaAhHQK6vJmCiAUd1fZQoaAZHQHH9Kpo9LYhoB0vvaAhHQK6vU+r2g391fZQoaAZHQHED6ews5GVoB00rAWgIR0Cur5KTbFjvdX2UKGgGR0BvKwku6ErYaAdNEAFoCEdArq/F38n/k3V9lChoBkdAcGT68g6ltWgHTRYBaAhHQK6wFIhhYvF1fZQoaAZHQHCZ3/Pw/gRoB00cAWgIR0CusCuNPxhEdX2UKGgGR0BtfI8GLUCraAdNCwFoCEdArrCS5qdpZnV9lChoBkdAbgRNC7btZ2gHTVUBaAhHQK6wqhFEy+J1fZQoaAZHQG5naKcd5ptoB00RAWgIR0CusRGgBcRldX2UKGgGR0BvC9tGd7OWaAdNBwFoCEdArrFr/2kBS3V9lChoBkdAcsvwA2hqTWgHTVgBaAhHQK6xoGRFI/Z1fZQoaAZHQHEhdozvZyxoB00TAWgIR0Cusd/BN21VdX2UKGgGR0ByABBa9sabaAdNLQFoCEdArru0m4RVZXV9lChoBkdAc0SDrJKaomgHTQ0BaAhHQK67vBSDRMN1fZQoaAZHQHHmJJPIn0FoB00XAWgIR0Cuu9fS6UaAdX2UKGgGR0BsfgWHk92YaAdNMAFoCEdArrymMdcSoXV9lChoBkdAcXe/sE7nxWgHTRwBaAhHQK68yi1RceN1fZQoaAZHQHECEXgtOEdoB00pAWgIR0CuvNAZjx0/dX2UKGgGR0ByHwZbY9PlaAdNJgFoCEdArr1jidat93V9lChoBkdAb+VzV+Zw42gHTRsBaAhHQK69eaNuLrJ1fZQoaAZHQG/LY5tFa0RoB00ZAWgIR0CuveMl9jPOdX2UKGgGR0BxG1uk1uR+aAdNIwFoCEdArr4hiAlOXXV9lChoBkdAcMBQDV6NVGgHTQ0BaAhHQK6+T37DVH51fZQoaAZHQHPmzvRZ2ZBoB0v3aAhHQK6+ZFkQPI51fZQoaAZHQHDc9vS+g15oB00nAWgIR0Cuvo9FnZkDdX2UKGgGR0Bwo71VYISlaAdL82gIR0CuvqYgJTl1dX2UKGgGR0BxKleSjgyeaAdL62gIR0CuvrcD8tPIdX2UKGgGR0BymwQSSNfgaAdNFQFoCEdArr9/2EkB0nV9lChoBkdAcC8ZvkzXSWgHTQcBaAhHQK7ATOk+HJt1fZQoaAZHQG9M9UsFt9BoB00XAWgIR0CuwH3PiT+vdX2UKGgGR0BwLQcghbGFaAdNDAFoCEdArsD3os7MgXV9lChoBkdAcoZj7ALy+mgHTQcBaAhHQK7A+A80UGp1fZQoaAZHQHJvo68xsVNoB0vbaAhHQK7BD2IwdsB1fZQoaAZHQHIabpNbkfdoB00cAWgIR0CuwVaKUFB6dX2UKGgGR0BwqlOdoWYXaAdNIAFoCEdArsHWDlHSW3V9lChoBkdAcK84W1twaWgHTXEBaAhHQK7CADFId2h1fZQoaAZHQHEKxT4tYjloB00wAWgIR0CuwiY7JW/8dX2UKGgGR0BxQMophF3IaAdNCQFoCEdArsJQv+OwPnV9lChoBkdAbzbyUcGTtGgHTR4BaAhHQK7CbKujh1l1fZQoaAZHQHDichxHXmNoB00RAWgIR0CuwoH0se4kdX2UKGgGR0ByMuSA6MisaAdL+GgIR0Cuwog5q/M4dX2UKGgGR0Bwou40/GEPaAdNPAFoCEdArsNaxeLNwHV9lChoBkdAcOJDDCP6sWgHTU4BaAhHQK7Dg9vjwQV1fZQoaAZHQHMfZ2+wkgRoB00lAWgIR0Cuw/1HvttzdX2UKGgGR0Btm7MibDuSaAdNFwFoCEdArsSZc7hegXV9lChoBkdAcekVjZtelmgHS/loCEdArsS+hAWznnV9lChoBkdAcTGBV+7UX2gHTSYBaAhHQK7FAuUUwi91fZQoaAZHQG9SfNA1NxloB00OAWgIR0CuxSr2HtWudX2UKGgGR0By7BXV9Wp7aAdNDgFoCEdArsVnV3EAHXV9lChoBkdAcYsnTiKiwmgHS/xoCEdArsWV8XvYvnV9lChoBkdAcD640/GEPGgHTS8BaAhHQK7Fl4u9OAR1fZQoaAZHQHCNFk+X7choB0vxaAhHQK7FslF+d9V1fZQoaAZHQHE+MBIWgvloB0v8aAhHQK7F+lnAZbZ1fZQoaAZHQG3rbDMvAXVoB00qAWgIR0Cuxk2SEDhcdX2UKGgGR0ByAIQpWmxdaAdNEgFoCEdArsZdPnB+F3V9lChoBkdAcjaJtix3V2gHTSQBaAhHQK7Gr0dRzil1fZQoaAZHQHKNXd43WFxoB00oAWgIR0CuxsHdO6/ZdX2UKGgGR0BxkjMcIZ62aAdNDwFoCEdArsc/TRYzSHV9lChoBkdAbvHtaY/mkmgHTRoBaAhHQK7HlA/s3Q51fZQoaAZHQG1Gi0ngHeJoB00pAWgIR0CuyFdc0LtvdX2UKGgGR0BxijkDIRywaAdNDwFoCEdArsi5Ktga33V9lChoBkdAbp9HyVfNRmgHTQgBaAhHQK7I54zrNW51fZQoaAZHQG5iW9+PRzBoB00sAWgIR0CuyRXg1m8NdX2UKGgGR0Bx1hGOMl1KaAdNDQFoCEdArskoT7EYO3V9lChoBkdAcITQ/5ckdGgHTQIBaAhHQK7JNj81n/V1fZQoaAZHQHBjavaDf3xoB00UAWgIR0Cuya6GpMpPdX2UKGgGR0BwCoztTkyUaAdNDwFoCEdArsoMAWBSUHV9lChoBkdAbqOQWepXIWgHTSgBaAhHQK7KGMx46fd1fZQoaAZHQHBlfO+qR2doB01DAWgIR0Cuyl9I5HVgdX2UKGgGR0Bu6pjtoi9qaAdNDgFoCEdArsp4uRLbpXV9lChoBkdAcErTefqX4WgHTQABaAhHQK7KsAI6bON1fZQoaAZHQHB+IxYaHbhoB00OAWgIR0CuysngHeJpdX2UKGgGR0BvYPgaWHDaaAdNMAFoCEdArsrYHE/B33VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (177 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 263.86252080269304, "std_reward": 15.155523780104485, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-28T12:08:42.951504"}
|