File size: 2,277 Bytes
db4344e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
library_name: transformers
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
model-index:
- name: The_700_data_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# The_700_data_model
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4588
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 0.5723 | 5.1613 | 100 | 0.5148 |
| 0.5244 | 10.3226 | 200 | 0.4888 |
| 0.5008 | 15.4839 | 300 | 0.4817 |
| 0.4873 | 20.6452 | 400 | 0.4742 |
| 0.4769 | 25.8065 | 500 | 0.4700 |
| 0.4741 | 30.9677 | 600 | 0.4667 |
| 0.4612 | 36.1290 | 700 | 0.4600 |
| 0.4522 | 41.2903 | 800 | 0.4593 |
| 0.4526 | 46.4516 | 900 | 0.4601 |
| 0.4447 | 51.6129 | 1000 | 0.4584 |
| 0.4489 | 56.7742 | 1100 | 0.4604 |
| 0.4373 | 61.9355 | 1200 | 0.4577 |
| 0.4332 | 67.0968 | 1300 | 0.4592 |
| 0.4338 | 72.2581 | 1400 | 0.4598 |
| 0.4328 | 77.4194 | 1500 | 0.4588 |
### Framework versions
- Transformers 4.46.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0
|