|
|
|
import inspect
|
|
import math
|
|
from typing import Callable, List, Optional, Union
|
|
|
|
import torch
|
|
from diffusers import DiffusionPipeline
|
|
from diffusers.image_processor import VaeImageProcessor
|
|
from diffusers.schedulers import (
|
|
DDIMScheduler,
|
|
DPMSolverMultistepScheduler,
|
|
EulerAncestralDiscreteScheduler,
|
|
EulerDiscreteScheduler,
|
|
LMSDiscreteScheduler,
|
|
PNDMScheduler,
|
|
)
|
|
from diffusers.utils import is_accelerate_available
|
|
from diffusers.utils.torch_utils import randn_tensor
|
|
from einops import rearrange
|
|
from tqdm import tqdm
|
|
from transformers import CLIPImageProcessor
|
|
|
|
from modules import ReferenceAttentionControl
|
|
from .context import get_context_scheduler
|
|
|
|
|
|
def retrieve_timesteps(
|
|
scheduler,
|
|
num_inference_steps: Optional[int] = None,
|
|
device: Optional[Union[str, torch.device]] = None,
|
|
timesteps: Optional[List[int]] = None,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
|
|
|
Args:
|
|
scheduler (`SchedulerMixin`):
|
|
The scheduler to get timesteps from.
|
|
num_inference_steps (`int`):
|
|
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
|
`timesteps` must be `None`.
|
|
device (`str` or `torch.device`, *optional*):
|
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
|
timesteps (`List[int]`, *optional*):
|
|
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
|
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
|
|
must be `None`.
|
|
|
|
Returns:
|
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
|
second element is the number of inference steps.
|
|
"""
|
|
if timesteps is not None:
|
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
|
if not accepts_timesteps:
|
|
raise ValueError(
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
|
f" timestep schedules. Please check whether you are using the correct scheduler."
|
|
)
|
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
num_inference_steps = len(timesteps)
|
|
else:
|
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
return timesteps, num_inference_steps
|
|
|
|
|
|
class VExpressPipeline(DiffusionPipeline):
|
|
_optional_components = []
|
|
|
|
def __init__(
|
|
self,
|
|
vae,
|
|
reference_net,
|
|
denoising_unet,
|
|
v_kps_guider,
|
|
audio_processor,
|
|
audio_encoder,
|
|
audio_projection,
|
|
scheduler: Union[
|
|
DDIMScheduler,
|
|
PNDMScheduler,
|
|
LMSDiscreteScheduler,
|
|
EulerDiscreteScheduler,
|
|
EulerAncestralDiscreteScheduler,
|
|
DPMSolverMultistepScheduler,
|
|
],
|
|
image_proj_model=None,
|
|
tokenizer=None,
|
|
text_encoder=None,
|
|
):
|
|
super().__init__()
|
|
|
|
self.register_modules(
|
|
vae=vae,
|
|
reference_net=reference_net,
|
|
denoising_unet=denoising_unet,
|
|
v_kps_guider=v_kps_guider,
|
|
audio_processor=audio_processor,
|
|
audio_encoder=audio_encoder,
|
|
audio_projection=audio_projection,
|
|
scheduler=scheduler,
|
|
image_proj_model=image_proj_model,
|
|
tokenizer=tokenizer,
|
|
text_encoder=text_encoder,
|
|
)
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
|
self.clip_image_processor = CLIPImageProcessor()
|
|
self.reference_image_processor = VaeImageProcessor(
|
|
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True
|
|
)
|
|
self.condition_image_processor = VaeImageProcessor(
|
|
vae_scale_factor=self.vae_scale_factor,
|
|
do_convert_rgb=True,
|
|
do_normalize=False,
|
|
)
|
|
|
|
def enable_vae_slicing(self):
|
|
self.vae.enable_slicing()
|
|
|
|
def disable_vae_slicing(self):
|
|
self.vae.disable_slicing()
|
|
|
|
def enable_sequential_cpu_offload(self, gpu_id=0):
|
|
if is_accelerate_available():
|
|
from accelerate import cpu_offload
|
|
else:
|
|
raise ImportError("Please install accelerate via `pip install accelerate`")
|
|
|
|
device = torch.device(f"cuda:{gpu_id}")
|
|
|
|
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
|
if cpu_offloaded_model is not None:
|
|
cpu_offload(cpu_offloaded_model, device)
|
|
|
|
@property
|
|
def _execution_device(self):
|
|
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
|
return self.device
|
|
for module in self.unet.modules():
|
|
if (
|
|
hasattr(module, "_hf_hook")
|
|
and hasattr(module._hf_hook, "execution_device")
|
|
and module._hf_hook.execution_device is not None
|
|
):
|
|
return torch.device(module._hf_hook.execution_device)
|
|
return self.device
|
|
|
|
@torch.no_grad()
|
|
def decode_latents(self, latents):
|
|
video_length = latents.shape[2]
|
|
latents = 1 / 0.18215 * latents
|
|
latents = rearrange(latents, "b c f h w -> (b f) c h w")
|
|
video = []
|
|
for frame_idx in tqdm(range(latents.shape[0]), desc='Decoding latents into frames'):
|
|
image = self.vae.decode(latents[frame_idx: frame_idx + 1].to(self.vae.device)).sample
|
|
image = (image / 2 + 0.5).clamp(0, 1)
|
|
image = image.cpu().float()
|
|
video.append(image)
|
|
video = torch.cat(video)
|
|
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
|
|
|
|
return video
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta):
|
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(
|
|
inspect.signature(self.scheduler.step).parameters.keys()
|
|
)
|
|
extra_step_kwargs = {}
|
|
if accepts_eta:
|
|
extra_step_kwargs["eta"] = eta
|
|
|
|
|
|
accepts_generator = "generator" in set(
|
|
inspect.signature(self.scheduler.step).parameters.keys()
|
|
)
|
|
if accepts_generator:
|
|
extra_step_kwargs["generator"] = generator
|
|
return extra_step_kwargs
|
|
|
|
def prepare_latents(
|
|
self,
|
|
batch_size,
|
|
num_channels_latents,
|
|
width,
|
|
height,
|
|
video_length,
|
|
dtype,
|
|
device,
|
|
generator,
|
|
latents=None
|
|
):
|
|
shape = (
|
|
batch_size,
|
|
num_channels_latents,
|
|
video_length,
|
|
height // self.vae_scale_factor,
|
|
width // self.vae_scale_factor,
|
|
)
|
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|
raise ValueError(
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|
)
|
|
|
|
if latents is None:
|
|
latents = randn_tensor(
|
|
shape, generator=generator, device=device, dtype=dtype
|
|
)
|
|
|
|
else:
|
|
latents = latents.to(device)
|
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma
|
|
return latents
|
|
|
|
def _encode_prompt(
|
|
self,
|
|
prompt,
|
|
device,
|
|
num_videos_per_prompt,
|
|
do_classifier_free_guidance,
|
|
negative_prompt,
|
|
):
|
|
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
|
|
|
text_inputs = self.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_input_ids = text_inputs.input_ids
|
|
untruncated_ids = self.tokenizer(
|
|
prompt, padding="longest", return_tensors="pt"
|
|
).input_ids
|
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
|
text_input_ids, untruncated_ids
|
|
):
|
|
removed_text = self.tokenizer.batch_decode(
|
|
untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]
|
|
)
|
|
|
|
if (
|
|
hasattr(self.text_encoder.config, "use_attention_mask")
|
|
and self.text_encoder.config.use_attention_mask
|
|
):
|
|
attention_mask = text_inputs.attention_mask.to(device)
|
|
else:
|
|
attention_mask = None
|
|
|
|
text_embeddings = self.text_encoder(
|
|
text_input_ids.to(device),
|
|
attention_mask=attention_mask,
|
|
)
|
|
text_embeddings = text_embeddings[0]
|
|
|
|
|
|
bs_embed, seq_len, _ = text_embeddings.shape
|
|
text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1)
|
|
text_embeddings = text_embeddings.view(
|
|
bs_embed * num_videos_per_prompt, seq_len, -1
|
|
)
|
|
|
|
|
|
if do_classifier_free_guidance:
|
|
uncond_tokens: List[str]
|
|
if negative_prompt is None:
|
|
uncond_tokens = [""] * batch_size
|
|
elif type(prompt) is not type(negative_prompt):
|
|
raise TypeError(
|
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
|
f" {type(prompt)}."
|
|
)
|
|
elif isinstance(negative_prompt, str):
|
|
uncond_tokens = [negative_prompt]
|
|
elif batch_size != len(negative_prompt):
|
|
raise ValueError(
|
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
|
" the batch size of `prompt`."
|
|
)
|
|
else:
|
|
uncond_tokens = negative_prompt
|
|
|
|
max_length = text_input_ids.shape[-1]
|
|
uncond_input = self.tokenizer(
|
|
uncond_tokens,
|
|
padding="max_length",
|
|
max_length=max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
if (
|
|
hasattr(self.text_encoder.config, "use_attention_mask")
|
|
and self.text_encoder.config.use_attention_mask
|
|
):
|
|
attention_mask = uncond_input.attention_mask.to(device)
|
|
else:
|
|
attention_mask = None
|
|
|
|
uncond_embeddings = self.text_encoder(
|
|
uncond_input.input_ids.to(device),
|
|
attention_mask=attention_mask,
|
|
)
|
|
uncond_embeddings = uncond_embeddings[0]
|
|
|
|
|
|
seq_len = uncond_embeddings.shape[1]
|
|
uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1)
|
|
uncond_embeddings = uncond_embeddings.view(
|
|
batch_size * num_videos_per_prompt, seq_len, -1
|
|
)
|
|
|
|
|
|
|
|
|
|
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
|
|
|
return text_embeddings
|
|
|
|
def get_timesteps(self, num_inference_steps, strength, device):
|
|
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
|
|
|
t_start = max(num_inference_steps - init_timestep, 0)
|
|
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:]
|
|
|
|
return timesteps, num_inference_steps - t_start
|
|
|
|
def prepare_reference_latent(self, reference_image, height, width):
|
|
reference_image_tensor = self.reference_image_processor.preprocess(reference_image, height=height, width=width)
|
|
reference_image_tensor = reference_image_tensor.to(dtype=self.dtype, device=self.device)
|
|
reference_image_latents = self.vae.encode(reference_image_tensor).latent_dist.mean
|
|
reference_image_latents = reference_image_latents * 0.18215
|
|
return reference_image_latents
|
|
|
|
def prepare_kps_feature(self, kps_images, height, width, do_classifier_free_guidance):
|
|
kps_image_tensors = []
|
|
for idx, kps_image in enumerate(kps_images):
|
|
kps_image_tensor = self.condition_image_processor.preprocess(kps_image, height=height, width=width)
|
|
kps_image_tensor = kps_image_tensor.unsqueeze(2)
|
|
kps_image_tensors.append(kps_image_tensor)
|
|
kps_images_tensor = torch.cat(kps_image_tensors, dim=2)
|
|
|
|
bs = 16
|
|
num_forward = math.ceil(kps_images_tensor.shape[2] / bs)
|
|
kps_feature = []
|
|
for i in range(num_forward):
|
|
tensor = kps_images_tensor[:, :, i * bs:(i + 1) * bs, ...].to(device=self.device, dtype=self.dtype)
|
|
feature = self.v_kps_guider(tensor).cpu()
|
|
kps_feature.append(feature)
|
|
torch.cuda.empty_cache()
|
|
kps_feature = torch.cat(kps_feature, dim=2)
|
|
|
|
if do_classifier_free_guidance:
|
|
uc_kps_feature = torch.zeros_like(kps_feature)
|
|
kps_feature = torch.cat([uc_kps_feature, kps_feature], dim=0)
|
|
|
|
return kps_feature
|
|
|
|
def prepare_audio_embeddings(self, audio_waveform, video_length, num_pad_audio_frames, do_classifier_free_guidance):
|
|
audio_waveform = self.audio_processor(audio_waveform, return_tensors="pt", sampling_rate=16000)['input_values']
|
|
audio_waveform = audio_waveform.to(self.device, self.dtype)
|
|
audio_embeddings = self.audio_encoder(audio_waveform).last_hidden_state
|
|
|
|
audio_embeddings = torch.nn.functional.interpolate(
|
|
audio_embeddings.permute(0, 2, 1),
|
|
size=2 * video_length,
|
|
mode='linear',
|
|
)[0, :, :].permute(1, 0)
|
|
|
|
audio_embeddings = torch.cat([
|
|
torch.zeros_like(audio_embeddings)[:2 * num_pad_audio_frames, :],
|
|
audio_embeddings,
|
|
torch.zeros_like(audio_embeddings)[:2 * num_pad_audio_frames, :],
|
|
], dim=0)
|
|
|
|
frame_audio_embeddings = []
|
|
for frame_idx in range(video_length):
|
|
start_sample = frame_idx
|
|
end_sample = frame_idx + 2 * num_pad_audio_frames
|
|
|
|
frame_audio_embedding = audio_embeddings[2 * start_sample:2 * (end_sample + 1), :]
|
|
frame_audio_embeddings.append(frame_audio_embedding)
|
|
audio_embeddings = torch.stack(frame_audio_embeddings, dim=0)
|
|
|
|
audio_embeddings = self.audio_projection(audio_embeddings).unsqueeze(0)
|
|
if do_classifier_free_guidance:
|
|
uc_audio_embeddings = torch.zeros_like(audio_embeddings)
|
|
audio_embeddings = torch.cat([uc_audio_embeddings, audio_embeddings], dim=0)
|
|
return audio_embeddings
|
|
|
|
@torch.no_grad()
|
|
def __call__(
|
|
self,
|
|
reference_image,
|
|
kps_images,
|
|
audio_waveform,
|
|
width,
|
|
height,
|
|
video_length,
|
|
num_inference_steps,
|
|
guidance_scale,
|
|
strength=1.,
|
|
num_images_per_prompt=1,
|
|
eta: float = 0.0,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
output_type: Optional[str] = "tensor",
|
|
return_dict: bool = True,
|
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
|
callback_steps: Optional[int] = 1,
|
|
context_schedule="uniform",
|
|
context_frames=24,
|
|
context_overlap=4,
|
|
reference_attention_weight=1.,
|
|
audio_attention_weight=1.,
|
|
num_pad_audio_frames=2,
|
|
do_multi_devices_inference=False,
|
|
save_gpu_memory=False,
|
|
**kwargs,
|
|
):
|
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
|
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
|
|
|
device = self._execution_device
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
batch_size = 1
|
|
|
|
|
|
timesteps = None
|
|
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
|
|
|
|
reference_control_writer = ReferenceAttentionControl(
|
|
self.reference_net,
|
|
do_classifier_free_guidance=do_classifier_free_guidance,
|
|
mode="write",
|
|
batch_size=batch_size,
|
|
fusion_blocks="full",
|
|
)
|
|
reference_control_reader = ReferenceAttentionControl(
|
|
self.denoising_unet,
|
|
do_classifier_free_guidance=do_classifier_free_guidance,
|
|
mode="read",
|
|
batch_size=batch_size,
|
|
fusion_blocks="full",
|
|
reference_attention_weight=reference_attention_weight,
|
|
audio_attention_weight=audio_attention_weight,
|
|
)
|
|
|
|
num_channels_latents = self.denoising_unet.in_channels
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
|
|
reference_image_latents = self.prepare_reference_latent(reference_image, height, width)
|
|
kps_feature = self.prepare_kps_feature(kps_images, height, width, do_classifier_free_guidance)
|
|
if save_gpu_memory:
|
|
del self.v_kps_guider
|
|
torch.cuda.empty_cache()
|
|
audio_embeddings = self.prepare_audio_embeddings(
|
|
audio_waveform,
|
|
video_length,
|
|
num_pad_audio_frames,
|
|
do_classifier_free_guidance,
|
|
)
|
|
if save_gpu_memory:
|
|
del self.audio_processor, self.audio_encoder, self.audio_projection
|
|
torch.cuda.empty_cache()
|
|
|
|
context_scheduler = get_context_scheduler(context_schedule)
|
|
context_queue = list(
|
|
context_scheduler(
|
|
step=0,
|
|
num_frames=video_length,
|
|
context_size=context_frames,
|
|
context_stride=1,
|
|
context_overlap=context_overlap,
|
|
closed_loop=False,
|
|
)
|
|
)
|
|
|
|
num_frame_context = torch.zeros(video_length, device=device, dtype=torch.long)
|
|
for context in context_queue:
|
|
num_frame_context[context] += 1
|
|
|
|
encoder_hidden_states = torch.zeros((1, 1, 768), dtype=self.dtype, device=self.device)
|
|
self.reference_net(
|
|
reference_image_latents,
|
|
timestep=0,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
return_dict=False,
|
|
)
|
|
reference_control_reader.update(reference_control_writer, do_classifier_free_guidance)
|
|
if save_gpu_memory:
|
|
del self.reference_net
|
|
torch.cuda.empty_cache()
|
|
|
|
latents = self.prepare_latents(
|
|
batch_size * num_images_per_prompt,
|
|
num_channels_latents,
|
|
width,
|
|
height,
|
|
video_length,
|
|
self.dtype,
|
|
torch.device('cpu'),
|
|
generator,
|
|
)
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for i, t in enumerate(timesteps):
|
|
context_counter = torch.zeros(video_length, device=device, dtype=torch.long)
|
|
noise_preds = [None] * video_length
|
|
for context_idx, context in enumerate(context_queue):
|
|
latent_kps_feature = kps_feature[:, :, context].to(device, self.dtype)
|
|
|
|
latent_audio_embeddings = audio_embeddings[:, context, ...]
|
|
_, _, num_tokens, dim = latent_audio_embeddings.shape
|
|
latent_audio_embeddings = latent_audio_embeddings.reshape(-1, num_tokens, dim)
|
|
|
|
input_latents = latents[:, :, context, ...].to(device)
|
|
input_latents = input_latents.repeat(2 if do_classifier_free_guidance else 1, 1, 1, 1, 1)
|
|
input_latents = self.scheduler.scale_model_input(input_latents, t)
|
|
noise_pred = self.denoising_unet(
|
|
input_latents,
|
|
t,
|
|
encoder_hidden_states=latent_audio_embeddings.reshape(-1, num_tokens, dim),
|
|
kps_features=latent_kps_feature,
|
|
return_dict=False,
|
|
)[0]
|
|
if do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
context_counter[context] += 1
|
|
noise_pred /= num_frame_context[context][None, None, :, None, None]
|
|
step_frame_ids = []
|
|
step_noise_preds = []
|
|
for latent_idx, frame_idx in enumerate(context):
|
|
if noise_preds[frame_idx] is None:
|
|
noise_preds[frame_idx] = noise_pred[:, :, latent_idx, ...]
|
|
else:
|
|
noise_preds[frame_idx] += noise_pred[:, :, latent_idx, ...]
|
|
if context_counter[frame_idx] == num_frame_context[frame_idx]:
|
|
step_frame_ids.append(frame_idx)
|
|
step_noise_preds.append(noise_preds[frame_idx])
|
|
noise_preds[frame_idx] = None
|
|
step_noise_preds = torch.stack(step_noise_preds, dim=2)
|
|
output_latents = self.scheduler.step(
|
|
step_noise_preds,
|
|
t,
|
|
latents[:, :, step_frame_ids, ...].to(device),
|
|
**extra_step_kwargs,
|
|
).prev_sample
|
|
latents[:, :, step_frame_ids, ...] = output_latents.cpu()
|
|
|
|
progress_bar.set_description(
|
|
f'Denoising Step Index: {i + 1} / {len(timesteps)}, '
|
|
f'Context Index: {context_idx + 1} / {len(context_queue)}'
|
|
)
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
progress_bar.update()
|
|
if callback is not None and i % callback_steps == 0:
|
|
step_idx = i // getattr(self.scheduler, "order", 1)
|
|
callback(step_idx, t, latents)
|
|
|
|
reference_control_reader.clear()
|
|
reference_control_writer.clear()
|
|
|
|
video_tensor = self.decode_latents(latents)
|
|
return video_tensor
|
|
|