Commit
•
7a91fe7
1
Parent(s):
8754f63
Update README.md
Browse files
README.md
CHANGED
@@ -24,11 +24,17 @@ The model only has 22 million parameters and is 51 MB small, providing a signifi
|
|
24 |
This model was trained to provide a very small and highly efficient zeroshot option,
|
25 |
especially for edge devices or in-browser use-cases with transformers.js.
|
26 |
|
|
|
|
|
|
|
|
|
27 |
|
28 |
## Metrics:
|
29 |
|
30 |
I didn't not do zeroshot evaluation for this model to save time and compute.
|
31 |
-
The table below shows standard accuracy for all datasets the model was trained on.
|
|
|
|
|
32 |
|
33 |
|Datasets|mnli_m|mnli_mm|fevernli|anli_r1|anli_r2|anli_r3|wanli|lingnli|wellformedquery|rottentomatoes|amazonpolarity|imdb|yelpreviews|hatexplain|massive|banking77|emotiondair|emocontext|empathetic|agnews|yahootopics|biasframes_sex|biasframes_offensive|biasframes_intent|financialphrasebank|appreviews|hateoffensive|trueteacher|spam|wikitoxic_toxicaggregated|wikitoxic_obscene|wikitoxic_identityhate|wikitoxic_threat|wikitoxic_insult|manifesto|capsotu|
|
34 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|
|
|
24 |
This model was trained to provide a very small and highly efficient zeroshot option,
|
25 |
especially for edge devices or in-browser use-cases with transformers.js.
|
26 |
|
27 |
+
## Usage and other details
|
28 |
+
For usage instructions and other details refer to
|
29 |
+
this model card [MoritzLaurer/deberta-v3-large-zeroshot-v1.1-all-33](https://huggingface.co/MoritzLaurer/deberta-v3-large-zeroshot-v1.1-all-33)
|
30 |
+
and this [paper](https://arxiv.org/pdf/2312.17543.pdf).
|
31 |
|
32 |
## Metrics:
|
33 |
|
34 |
I didn't not do zeroshot evaluation for this model to save time and compute.
|
35 |
+
The table below shows standard accuracy for all datasets the model was trained on (note that the NLI datasets are binary).
|
36 |
+
|
37 |
+
General takeaway: the model is much more efficient than its larger sisters, but it performs less well.
|
38 |
|
39 |
|Datasets|mnli_m|mnli_mm|fevernli|anli_r1|anli_r2|anli_r3|wanli|lingnli|wellformedquery|rottentomatoes|amazonpolarity|imdb|yelpreviews|hatexplain|massive|banking77|emotiondair|emocontext|empathetic|agnews|yahootopics|biasframes_sex|biasframes_offensive|biasframes_intent|financialphrasebank|appreviews|hateoffensive|trueteacher|spam|wikitoxic_toxicaggregated|wikitoxic_obscene|wikitoxic_identityhate|wikitoxic_threat|wikitoxic_insult|manifesto|capsotu|
|
40 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|