First push of the adapter
Browse files- README.md +202 -3
- adapter_config.json +35 -0
- adapter_model.safetensors +3 -0
- optimizer.pt +3 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- trainer_state.json +393 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,3 +1,202 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: mistralai/Mistral-7B-Instruct-v0.3
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.11.2.dev0
|
adapter_config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 64,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 64,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"lm_head",
|
24 |
+
"v_proj",
|
25 |
+
"k_proj",
|
26 |
+
"up_proj",
|
27 |
+
"down_proj",
|
28 |
+
"gate_proj",
|
29 |
+
"q_proj",
|
30 |
+
"o_proj"
|
31 |
+
],
|
32 |
+
"task_type": "CAUSAL_LM",
|
33 |
+
"use_dora": false,
|
34 |
+
"use_rslora": false
|
35 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e000cccff96c1445c81c222cec8c93b81d6417097eb24501dab355f5315f55e2
|
3 |
+
size 1217458040
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15e16e2dd660e6ba41711e1661708f6140d64f81931fe87aa939335d1ff70b50
|
3 |
+
size 341465180
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:841550ac5d905093ae9a3524258fcf9fe2fb4f0a506897d98fd36e4483473704
|
3 |
+
size 14244
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2709bd6625c05c25dfd32dafaddd4c505833de65b2eb8bfbd72664f70e73529d
|
3 |
+
size 1064
|
trainer_state.json
ADDED
@@ -0,0 +1,393 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.8808777429467085,
|
5 |
+
"eval_steps": 50,
|
6 |
+
"global_step": 1200,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.07836990595611286,
|
13 |
+
"grad_norm": 0.9672619104385376,
|
14 |
+
"learning_rate": 2.413127413127413e-05,
|
15 |
+
"loss": 0.5333,
|
16 |
+
"step": 50
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.07836990595611286,
|
20 |
+
"eval_loss": 0.21812455356121063,
|
21 |
+
"eval_runtime": 136.5294,
|
22 |
+
"eval_samples_per_second": 5.23,
|
23 |
+
"eval_steps_per_second": 0.659,
|
24 |
+
"step": 50
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.15673981191222572,
|
28 |
+
"grad_norm": 0.8239838480949402,
|
29 |
+
"learning_rate": 2.3166023166023168e-05,
|
30 |
+
"loss": 0.1948,
|
31 |
+
"step": 100
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.15673981191222572,
|
35 |
+
"eval_loss": 0.180569127202034,
|
36 |
+
"eval_runtime": 136.8617,
|
37 |
+
"eval_samples_per_second": 5.217,
|
38 |
+
"eval_steps_per_second": 0.658,
|
39 |
+
"step": 100
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.23510971786833856,
|
43 |
+
"grad_norm": 0.4985473155975342,
|
44 |
+
"learning_rate": 2.2200772200772202e-05,
|
45 |
+
"loss": 0.1772,
|
46 |
+
"step": 150
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.23510971786833856,
|
50 |
+
"eval_loss": 0.17201179265975952,
|
51 |
+
"eval_runtime": 136.9237,
|
52 |
+
"eval_samples_per_second": 5.215,
|
53 |
+
"eval_steps_per_second": 0.657,
|
54 |
+
"step": 150
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.31347962382445144,
|
58 |
+
"grad_norm": 0.5671184659004211,
|
59 |
+
"learning_rate": 2.1235521235521236e-05,
|
60 |
+
"loss": 0.1674,
|
61 |
+
"step": 200
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.31347962382445144,
|
65 |
+
"eval_loss": 0.16670115292072296,
|
66 |
+
"eval_runtime": 137.1006,
|
67 |
+
"eval_samples_per_second": 5.208,
|
68 |
+
"eval_steps_per_second": 0.656,
|
69 |
+
"step": 200
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.39184952978056425,
|
73 |
+
"grad_norm": 0.5542048215866089,
|
74 |
+
"learning_rate": 2.0270270270270273e-05,
|
75 |
+
"loss": 0.1639,
|
76 |
+
"step": 250
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.39184952978056425,
|
80 |
+
"eval_loss": 0.16387563943862915,
|
81 |
+
"eval_runtime": 136.9694,
|
82 |
+
"eval_samples_per_second": 5.213,
|
83 |
+
"eval_steps_per_second": 0.657,
|
84 |
+
"step": 250
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.4702194357366771,
|
88 |
+
"grad_norm": 0.5355677604675293,
|
89 |
+
"learning_rate": 1.9305019305019306e-05,
|
90 |
+
"loss": 0.1603,
|
91 |
+
"step": 300
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.4702194357366771,
|
95 |
+
"eval_loss": 0.16061373054981232,
|
96 |
+
"eval_runtime": 136.8175,
|
97 |
+
"eval_samples_per_second": 5.219,
|
98 |
+
"eval_steps_per_second": 0.658,
|
99 |
+
"step": 300
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.54858934169279,
|
103 |
+
"grad_norm": 0.648248553276062,
|
104 |
+
"learning_rate": 1.833976833976834e-05,
|
105 |
+
"loss": 0.1563,
|
106 |
+
"step": 350
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.54858934169279,
|
110 |
+
"eval_loss": 0.1591891348361969,
|
111 |
+
"eval_runtime": 136.7712,
|
112 |
+
"eval_samples_per_second": 5.22,
|
113 |
+
"eval_steps_per_second": 0.658,
|
114 |
+
"step": 350
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.6269592476489029,
|
118 |
+
"grad_norm": 0.4232325851917267,
|
119 |
+
"learning_rate": 1.7374517374517377e-05,
|
120 |
+
"loss": 0.1595,
|
121 |
+
"step": 400
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.6269592476489029,
|
125 |
+
"eval_loss": 0.15778718888759613,
|
126 |
+
"eval_runtime": 137.2186,
|
127 |
+
"eval_samples_per_second": 5.203,
|
128 |
+
"eval_steps_per_second": 0.656,
|
129 |
+
"step": 400
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.7053291536050157,
|
133 |
+
"grad_norm": 0.4626815915107727,
|
134 |
+
"learning_rate": 1.640926640926641e-05,
|
135 |
+
"loss": 0.1508,
|
136 |
+
"step": 450
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.7053291536050157,
|
140 |
+
"eval_loss": 0.1561730057001114,
|
141 |
+
"eval_runtime": 136.858,
|
142 |
+
"eval_samples_per_second": 5.217,
|
143 |
+
"eval_steps_per_second": 0.658,
|
144 |
+
"step": 450
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 0.7836990595611285,
|
148 |
+
"grad_norm": 0.4221360385417938,
|
149 |
+
"learning_rate": 1.5444015444015444e-05,
|
150 |
+
"loss": 0.1581,
|
151 |
+
"step": 500
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 0.7836990595611285,
|
155 |
+
"eval_loss": 0.15424229204654694,
|
156 |
+
"eval_runtime": 137.1103,
|
157 |
+
"eval_samples_per_second": 5.207,
|
158 |
+
"eval_steps_per_second": 0.656,
|
159 |
+
"step": 500
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.8620689655172413,
|
163 |
+
"grad_norm": 0.3882145583629608,
|
164 |
+
"learning_rate": 1.4478764478764478e-05,
|
165 |
+
"loss": 0.1441,
|
166 |
+
"step": 550
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 0.8620689655172413,
|
170 |
+
"eval_loss": 0.15357084572315216,
|
171 |
+
"eval_runtime": 136.9739,
|
172 |
+
"eval_samples_per_second": 5.213,
|
173 |
+
"eval_steps_per_second": 0.657,
|
174 |
+
"step": 550
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 0.9404388714733543,
|
178 |
+
"grad_norm": 0.4727325141429901,
|
179 |
+
"learning_rate": 1.3513513513513515e-05,
|
180 |
+
"loss": 0.1487,
|
181 |
+
"step": 600
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 0.9404388714733543,
|
185 |
+
"eval_loss": 0.15231835842132568,
|
186 |
+
"eval_runtime": 136.9176,
|
187 |
+
"eval_samples_per_second": 5.215,
|
188 |
+
"eval_steps_per_second": 0.657,
|
189 |
+
"step": 600
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.0188087774294672,
|
193 |
+
"grad_norm": 0.4438364803791046,
|
194 |
+
"learning_rate": 1.2548262548262549e-05,
|
195 |
+
"loss": 0.14,
|
196 |
+
"step": 650
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.0188087774294672,
|
200 |
+
"eval_loss": 0.15219952166080475,
|
201 |
+
"eval_runtime": 137.0305,
|
202 |
+
"eval_samples_per_second": 5.211,
|
203 |
+
"eval_steps_per_second": 0.657,
|
204 |
+
"step": 650
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.09717868338558,
|
208 |
+
"grad_norm": 0.5468264818191528,
|
209 |
+
"learning_rate": 1.1583011583011584e-05,
|
210 |
+
"loss": 0.1366,
|
211 |
+
"step": 700
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.09717868338558,
|
215 |
+
"eval_loss": 0.1532224416732788,
|
216 |
+
"eval_runtime": 137.4744,
|
217 |
+
"eval_samples_per_second": 5.194,
|
218 |
+
"eval_steps_per_second": 0.655,
|
219 |
+
"step": 700
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 1.1755485893416928,
|
223 |
+
"grad_norm": 0.609539270401001,
|
224 |
+
"learning_rate": 1.0617760617760618e-05,
|
225 |
+
"loss": 0.1352,
|
226 |
+
"step": 750
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 1.1755485893416928,
|
230 |
+
"eval_loss": 0.15247634053230286,
|
231 |
+
"eval_runtime": 137.6071,
|
232 |
+
"eval_samples_per_second": 5.189,
|
233 |
+
"eval_steps_per_second": 0.654,
|
234 |
+
"step": 750
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 1.2539184952978055,
|
238 |
+
"grad_norm": 0.5422230958938599,
|
239 |
+
"learning_rate": 9.652509652509653e-06,
|
240 |
+
"loss": 0.1278,
|
241 |
+
"step": 800
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 1.2539184952978055,
|
245 |
+
"eval_loss": 0.15182016789913177,
|
246 |
+
"eval_runtime": 137.443,
|
247 |
+
"eval_samples_per_second": 5.195,
|
248 |
+
"eval_steps_per_second": 0.655,
|
249 |
+
"step": 800
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 1.3322884012539185,
|
253 |
+
"grad_norm": 0.574143648147583,
|
254 |
+
"learning_rate": 8.687258687258689e-06,
|
255 |
+
"loss": 0.1315,
|
256 |
+
"step": 850
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 1.3322884012539185,
|
260 |
+
"eval_loss": 0.15190598368644714,
|
261 |
+
"eval_runtime": 137.5049,
|
262 |
+
"eval_samples_per_second": 5.193,
|
263 |
+
"eval_steps_per_second": 0.655,
|
264 |
+
"step": 850
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 1.4106583072100314,
|
268 |
+
"grad_norm": 0.5425278544425964,
|
269 |
+
"learning_rate": 7.722007722007722e-06,
|
270 |
+
"loss": 0.1274,
|
271 |
+
"step": 900
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 1.4106583072100314,
|
275 |
+
"eval_loss": 0.15125001966953278,
|
276 |
+
"eval_runtime": 137.6226,
|
277 |
+
"eval_samples_per_second": 5.188,
|
278 |
+
"eval_steps_per_second": 0.654,
|
279 |
+
"step": 900
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 1.489028213166144,
|
283 |
+
"grad_norm": 0.48568734526634216,
|
284 |
+
"learning_rate": 6.7567567567567575e-06,
|
285 |
+
"loss": 0.1347,
|
286 |
+
"step": 950
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 1.489028213166144,
|
290 |
+
"eval_loss": 0.15007726848125458,
|
291 |
+
"eval_runtime": 137.6801,
|
292 |
+
"eval_samples_per_second": 5.186,
|
293 |
+
"eval_steps_per_second": 0.654,
|
294 |
+
"step": 950
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 1.567398119122257,
|
298 |
+
"grad_norm": 0.5619414448738098,
|
299 |
+
"learning_rate": 5.791505791505792e-06,
|
300 |
+
"loss": 0.1332,
|
301 |
+
"step": 1000
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 1.567398119122257,
|
305 |
+
"eval_loss": 0.15013186633586884,
|
306 |
+
"eval_runtime": 137.5165,
|
307 |
+
"eval_samples_per_second": 5.192,
|
308 |
+
"eval_steps_per_second": 0.654,
|
309 |
+
"step": 1000
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 1.64576802507837,
|
313 |
+
"grad_norm": 0.5540875196456909,
|
314 |
+
"learning_rate": 4.8262548262548266e-06,
|
315 |
+
"loss": 0.1263,
|
316 |
+
"step": 1050
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 1.64576802507837,
|
320 |
+
"eval_loss": 0.14901334047317505,
|
321 |
+
"eval_runtime": 137.5107,
|
322 |
+
"eval_samples_per_second": 5.192,
|
323 |
+
"eval_steps_per_second": 0.654,
|
324 |
+
"step": 1050
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 1.7241379310344827,
|
328 |
+
"grad_norm": 0.5203628540039062,
|
329 |
+
"learning_rate": 3.861003861003861e-06,
|
330 |
+
"loss": 0.1291,
|
331 |
+
"step": 1100
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 1.7241379310344827,
|
335 |
+
"eval_loss": 0.14880172908306122,
|
336 |
+
"eval_runtime": 137.6519,
|
337 |
+
"eval_samples_per_second": 5.187,
|
338 |
+
"eval_steps_per_second": 0.654,
|
339 |
+
"step": 1100
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 1.8025078369905956,
|
343 |
+
"grad_norm": 0.5150081515312195,
|
344 |
+
"learning_rate": 2.895752895752896e-06,
|
345 |
+
"loss": 0.1287,
|
346 |
+
"step": 1150
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 1.8025078369905956,
|
350 |
+
"eval_loss": 0.14855234324932098,
|
351 |
+
"eval_runtime": 137.7759,
|
352 |
+
"eval_samples_per_second": 5.182,
|
353 |
+
"eval_steps_per_second": 0.653,
|
354 |
+
"step": 1150
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 1.8808777429467085,
|
358 |
+
"grad_norm": 0.5428478717803955,
|
359 |
+
"learning_rate": 1.9305019305019305e-06,
|
360 |
+
"loss": 0.1278,
|
361 |
+
"step": 1200
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 1.8808777429467085,
|
365 |
+
"eval_loss": 0.14838644862174988,
|
366 |
+
"eval_runtime": 137.7999,
|
367 |
+
"eval_samples_per_second": 5.181,
|
368 |
+
"eval_steps_per_second": 0.653,
|
369 |
+
"step": 1200
|
370 |
+
}
|
371 |
+
],
|
372 |
+
"logging_steps": 50,
|
373 |
+
"max_steps": 1300,
|
374 |
+
"num_input_tokens_seen": 0,
|
375 |
+
"num_train_epochs": 3,
|
376 |
+
"save_steps": 50,
|
377 |
+
"stateful_callbacks": {
|
378 |
+
"TrainerControl": {
|
379 |
+
"args": {
|
380 |
+
"should_epoch_stop": false,
|
381 |
+
"should_evaluate": false,
|
382 |
+
"should_log": false,
|
383 |
+
"should_save": true,
|
384 |
+
"should_training_stop": false
|
385 |
+
},
|
386 |
+
"attributes": {}
|
387 |
+
}
|
388 |
+
},
|
389 |
+
"total_flos": 2.1478967485661184e+17,
|
390 |
+
"train_batch_size": 2,
|
391 |
+
"trial_name": null,
|
392 |
+
"trial_params": null
|
393 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:233b92a49f68e2eaa40ba6359f026eba46d6a4caeeafedb3d7ac25bd3c8709d4
|
3 |
+
size 5112
|