File size: 4,512 Bytes
3511928
 
ffb4982
3511928
 
f5b15b8
ffb4982
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3511928
 
185cf61
3511928
2b515fb
8bf721c
185cf61
dcbd7ca
496fe8c
dcbd7ca
 
826333a
dcbd7ca
 
 
 
 
824d373
dcbd7ca
 
 
 
 
 
 
 
 
 
 
826333a
 
dcbd7ca
 
 
 
 
 
 
ffb4982
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
---
license: apache-2.0
library_name: transformers
datasets:
- argilla/distilabel-intel-orca-dpo-pairs
pipeline_tag: text-generation
model-index:
- name: Evangelion-7B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 68.94
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=VitalContribution/Evangelion-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 86.45
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=VitalContribution/Evangelion-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 63.97
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=VitalContribution/Evangelion-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 64.01
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=VitalContribution/Evangelion-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 79.95
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=VitalContribution/Evangelion-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 66.94
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=VitalContribution/Evangelion-7B
      name: Open LLM Leaderboard
---

<img src="https://cdn-uploads.huggingface.co/production/uploads/63ae02ff20176b2d21669dd6/AID8texkGhpCPrxEtb2MF.png" width="300" />

# Mozaic-7B (prev. Evangelion-7B)

We were curious to see what happens if one uses:
$$
\text{{high-quality DPO dataset}} + \text{{merge of DPO optimized and non-DPO optimized model}}
$$

The underlying model that I used was `/Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp`.  


# Dataset
Dataset: `/argilla/distilabel-intel-orca-dpo-pairs`

The dataset was roughly ~3000 samples but they were high quality (according to the chosen_score).  
The following filters were applied to the original dataset:
```python
dataset = dataset.filter(
    lambda r:
        r["status"] != "tie" and
        r["chosen_score"] >= 8 and
        not r["in_gsm8k_train"]
)
```

# Chat Template
I decided to go with the ChatML which is used for OpenHermes2.5
By the way I integreated the chat template into the models tokenizer.
```
<|im_start|>system
{system}<|im_end|>
<|im_start|>user
{user}<|im_end|>
<|im_start|>assistant
{asistant}<|im_end|>
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_VitalContribution__Evangelion-7B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |71.71|
|AI2 Reasoning Challenge (25-Shot)|68.94|
|HellaSwag (10-Shot)              |86.45|
|MMLU (5-Shot)                    |63.97|
|TruthfulQA (0-shot)              |64.01|
|Winogrande (5-shot)              |79.95|
|GSM8k (5-shot)                   |66.94|