--- license: apache-2.0 library_name: transformers datasets: - argilla/distilabel-intel-orca-dpo-pairs pipeline_tag: text-generation model-index: - name: Evangelion-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 68.94 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=VitalContribution/Evangelion-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.45 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=VitalContribution/Evangelion-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.97 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=VitalContribution/Evangelion-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 64.01 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=VitalContribution/Evangelion-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 79.95 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=VitalContribution/Evangelion-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 66.94 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=VitalContribution/Evangelion-7B name: Open LLM Leaderboard --- # Mozaic-7B (prev. Evangelion-7B) We were curious to see what happens if one uses: $$ \text{{high-quality DPO dataset}} + \text{{merge of DPO optimized and non-DPO optimized model}} $$ The underlying model that I used was `/Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp`. # Dataset Dataset: `/argilla/distilabel-intel-orca-dpo-pairs` The dataset was roughly ~3000 samples but they were high quality (according to the chosen_score). The following filters were applied to the original dataset: ```python dataset = dataset.filter( lambda r: r["status"] != "tie" and r["chosen_score"] >= 8 and not r["in_gsm8k_train"] ) ``` # Chat Template I decided to go with the ChatML which is used for OpenHermes2.5 By the way I integreated the chat template into the models tokenizer. ``` <|im_start|>system {system}<|im_end|> <|im_start|>user {user}<|im_end|> <|im_start|>assistant {asistant}<|im_end|> ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_VitalContribution__Evangelion-7B) | Metric |Value| |---------------------------------|----:| |Avg. |71.71| |AI2 Reasoning Challenge (25-Shot)|68.94| |HellaSwag (10-Shot) |86.45| |MMLU (5-Shot) |63.97| |TruthfulQA (0-shot) |64.01| |Winogrande (5-shot) |79.95| |GSM8k (5-shot) |66.94|