jartine commited on
Commit
9e3c4d7
1 Parent(s): 95149b9

Add README.md to repo

Browse files
Files changed (1) hide show
  1. README.md +47 -57
README.md CHANGED
@@ -18,40 +18,38 @@ tags:
18
  <!-- header start -->
19
  <!-- 200823 -->
20
  <div style="width: auto; margin-left: auto; margin-right: auto">
21
- <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
22
  </div>
23
  <div style="display: flex; justify-content: space-between; width: 100%;">
24
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
25
- <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
26
  </div>
27
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
28
- <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
29
  </div>
30
  </div>
31
- <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
32
  <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
33
  <!-- header end -->
34
 
35
- # Mistral 7B Instruct v0.2 - GGUF
36
  - Model creator: [Mistral AI_](https://huggingface.co/mistralai)
37
  - Original model: [Mistral 7B Instruct v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
38
 
39
  <!-- description start -->
40
  ## Description
41
 
42
- This repo contains GGUF format model files for [Mistral AI_'s Mistral 7B Instruct v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2).
43
 
44
  These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
45
 
46
- <!-- description end -->
47
- <!-- README_GGUF.md-about-gguf start -->
48
- ### About GGUF
49
 
50
- GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
51
 
52
- Here is an incomplete list of clients and libraries that are known to support GGUF:
53
 
54
- * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
55
  * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
56
  * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
57
  * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
@@ -62,13 +60,13 @@ Here is an incomplete list of clients and libraries that are known to support GG
62
  * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
63
  * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
64
 
65
- <!-- README_GGUF.md-about-gguf end -->
66
  <!-- repositories-available start -->
67
  ## Repositories available
68
 
69
- * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-AWQ)
70
- * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ)
71
- * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF)
72
  * [Mistral AI_'s original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
73
  <!-- repositories-available end -->
74
 
@@ -83,10 +81,10 @@ Here is an incomplete list of clients and libraries that are known to support GG
83
  <!-- prompt-template end -->
84
 
85
 
86
- <!-- compatibility_gguf start -->
87
  ## Compatibility
88
 
89
- These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
90
 
91
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
92
 
@@ -105,34 +103,34 @@ The new methods available are:
105
 
106
  Refer to the Provided Files table below to see what files use which methods, and how.
107
  </details>
108
- <!-- compatibility_gguf end -->
109
 
110
- <!-- README_GGUF.md-provided-files start -->
111
  ## Provided files
112
 
113
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
114
  | ---- | ---- | ---- | ---- | ---- | ----- |
115
- | [mistral-7b-instruct-v0.2.Q2_K.gguf](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q2_K.gguf) | Q2_K | 2 | 3.08 GB| 5.58 GB | smallest, significant quality loss - not recommended for most purposes |
116
- | [mistral-7b-instruct-v0.2.Q3_K_S.gguf](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q3_K_S.gguf) | Q3_K_S | 3 | 3.16 GB| 5.66 GB | very small, high quality loss |
117
- | [mistral-7b-instruct-v0.2.Q3_K_M.gguf](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q3_K_M.gguf) | Q3_K_M | 3 | 3.52 GB| 6.02 GB | very small, high quality loss |
118
- | [mistral-7b-instruct-v0.2.Q3_K_L.gguf](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q3_K_L.gguf) | Q3_K_L | 3 | 3.82 GB| 6.32 GB | small, substantial quality loss |
119
- | [mistral-7b-instruct-v0.2.Q4_0.gguf](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q4_0.gguf) | Q4_0 | 4 | 4.11 GB| 6.61 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
120
- | [mistral-7b-instruct-v0.2.Q4_K_S.gguf](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q4_K_S.gguf) | Q4_K_S | 4 | 4.14 GB| 6.64 GB | small, greater quality loss |
121
- | [mistral-7b-instruct-v0.2.Q4_K_M.gguf](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q4_K_M.gguf) | Q4_K_M | 4 | 4.37 GB| 6.87 GB | medium, balanced quality - recommended |
122
- | [mistral-7b-instruct-v0.2.Q5_0.gguf](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q5_0.gguf) | Q5_0 | 5 | 5.00 GB| 7.50 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
123
- | [mistral-7b-instruct-v0.2.Q5_K_S.gguf](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q5_K_S.gguf) | Q5_K_S | 5 | 5.00 GB| 7.50 GB | large, low quality loss - recommended |
124
- | [mistral-7b-instruct-v0.2.Q5_K_M.gguf](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q5_K_M.gguf) | Q5_K_M | 5 | 5.13 GB| 7.63 GB | large, very low quality loss - recommended |
125
- | [mistral-7b-instruct-v0.2.Q6_K.gguf](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q6_K.gguf) | Q6_K | 6 | 5.94 GB| 8.44 GB | very large, extremely low quality loss |
126
- | [mistral-7b-instruct-v0.2.Q8_0.gguf](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/blob/main/mistral-7b-instruct-v0.2.Q8_0.gguf) | Q8_0 | 8 | 7.70 GB| 10.20 GB | very large, extremely low quality loss - not recommended |
127
 
128
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
129
 
130
 
131
 
132
- <!-- README_GGUF.md-provided-files end -->
133
 
134
- <!-- README_GGUF.md-how-to-download start -->
135
- ## How to download GGUF files
136
 
137
  **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
138
 
@@ -144,7 +142,7 @@ The following clients/libraries will automatically download models for you, prov
144
 
145
  ### In `text-generation-webui`
146
 
147
- Under Download Model, you can enter the model repo: TheBloke/Mistral-7B-Instruct-v0.2-GGUF and below it, a specific filename to download, such as: mistral-7b-instruct-v0.2.Q4_K_M.gguf.
148
 
149
  Then click Download.
150
 
@@ -159,7 +157,7 @@ pip3 install huggingface-hub
159
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
160
 
161
  ```shell
162
- huggingface-cli download TheBloke/Mistral-7B-Instruct-v0.2-GGUF mistral-7b-instruct-v0.2.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
163
  ```
164
 
165
  <details>
@@ -168,7 +166,7 @@ huggingface-cli download TheBloke/Mistral-7B-Instruct-v0.2-GGUF mistral-7b-instr
168
  You can also download multiple files at once with a pattern:
169
 
170
  ```shell
171
- huggingface-cli download TheBloke/Mistral-7B-Instruct-v0.2-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
172
  ```
173
 
174
  For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
@@ -182,25 +180,25 @@ pip3 install hf_transfer
182
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
183
 
184
  ```shell
185
- HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Mistral-7B-Instruct-v0.2-GGUF mistral-7b-instruct-v0.2.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
186
  ```
187
 
188
  Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
189
  </details>
190
- <!-- README_GGUF.md-how-to-download end -->
191
 
192
- <!-- README_GGUF.md-how-to-run start -->
193
  ## Example `llama.cpp` command
194
 
195
  Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
196
 
197
  ```shell
198
- ./main -ngl 35 -m mistral-7b-instruct-v0.2.Q4_K_M.gguf --color -c 32768 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<s>[INST] {prompt} [/INST]"
199
  ```
200
 
201
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
202
 
203
- Change `-c 32768` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
204
 
205
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
206
 
@@ -212,7 +210,7 @@ Further instructions can be found in the text-generation-webui documentation, he
212
 
213
  ## How to run from Python code
214
 
215
- You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
216
 
217
  ### How to load this model in Python code, using llama-cpp-python
218
 
@@ -248,7 +246,7 @@ from llama_cpp import Llama
248
 
249
  # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
250
  llm = Llama(
251
- model_path="./mistral-7b-instruct-v0.2.Q4_K_M.gguf", # Download the model file first
252
  n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources
253
  n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
254
  n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
@@ -264,7 +262,7 @@ output = llm(
264
 
265
  # Chat Completion API
266
 
267
- llm = Llama(model_path="./mistral-7b-instruct-v0.2.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
268
  llm.create_chat_completion(
269
  messages = [
270
  {"role": "system", "content": "You are a story writing assistant."},
@@ -283,7 +281,7 @@ Here are guides on using llama-cpp-python and ctransformers with LangChain:
283
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
284
  * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
285
 
286
- <!-- README_GGUF.md-how-to-run end -->
287
 
288
  <!-- footer start -->
289
  <!-- 200823 -->
@@ -291,31 +289,23 @@ Here are guides on using llama-cpp-python and ctransformers with LangChain:
291
 
292
  For further support, and discussions on these models and AI in general, join us at:
293
 
294
- [TheBloke AI's Discord server](https://discord.gg/theblokeai)
295
 
296
  ## Thanks, and how to contribute
297
 
298
- Thanks to the [chirper.ai](https://chirper.ai) team!
299
 
300
- Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
301
 
302
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
303
 
304
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
305
 
306
- Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
307
 
308
- * Patreon: https://patreon.com/TheBlokeAI
309
- * Ko-Fi: https://ko-fi.com/TheBlokeAI
310
 
311
- **Special thanks to**: Aemon Algiz.
312
 
313
- **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
314
 
315
 
316
- Thank you to all my generous patrons and donaters!
317
 
318
- And thank you again to a16z for their generous grant.
319
 
320
  <!-- footer end -->
321
 
 
18
  <!-- header start -->
19
  <!-- 200823 -->
20
  <div style="width: auto; margin-left: auto; margin-right: auto">
 
21
  </div>
22
  <div style="display: flex; justify-content: space-between; width: 100%;">
23
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
24
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/FwAVVu7eJ4">Chat & support: jartine's Discord server</a></p>
25
  </div>
26
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
 
27
  </div>
28
  </div>
29
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">jartine's LLM work is generously supported by a grant from <a href="https://mozilla.org">mozilla</a></p></div>
30
  <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
31
  <!-- header end -->
32
 
33
+ # Mistral 7B Instruct v0.2 - llamafile
34
  - Model creator: [Mistral AI_](https://huggingface.co/mistralai)
35
  - Original model: [Mistral 7B Instruct v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
36
 
37
  <!-- description start -->
38
  ## Description
39
 
40
+ This repo contains llamafile format model files for [Mistral AI_'s Mistral 7B Instruct v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2).
41
 
42
  These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
43
 
44
+ WARNING: This README may contain inaccuracies. It was generated automatically by forking <a href=/TheBloke/Mistral-7B-Instruct-v0.2-GGUF>TheBloke/Mistral-7B-Instruct-v0.2-GGUF</a> and piping the README through sed. Errors should be reported to jartine, and do not reflect TheBloke. You can also support his work on [Patreon](https://www.patreon.com/TheBlokeAI).
45
+ <!-- README_llamafile.md-about-llamafile start -->
46
+ ### About llamafile
47
 
48
+ llamafile is a new format introduced by Mozilla Ocho on Nov 20th 2023. It uses Cosmopolitan Libc to turn LLM weights into runnable llama.cpp binaries that run on the stock installs of six OSes for both ARM64 and AMD64.
49
 
50
+ Here is an incomplete list of clients and libraries that are known to support llamafile:
51
 
52
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for llamafile. Offers a CLI and a server option.
53
  * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
54
  * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
55
  * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
 
60
  * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
61
  * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
62
 
63
+ <!-- README_llamafile.md-about-llamafile end -->
64
  <!-- repositories-available start -->
65
  ## Repositories available
66
 
67
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/jartine/Mistral-7B-Instruct-v0.2-AWQ)
68
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/jartine/Mistral-7B-Instruct-v0.2-GPTQ)
69
+ * [2, 3, 4, 5, 6 and 8-bit llamafile models for CPU+GPU inference](https://huggingface.co/jartine/Mistral-7B-Instruct-v0.2-llamafile)
70
  * [Mistral AI_'s original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
71
  <!-- repositories-available end -->
72
 
 
81
  <!-- prompt-template end -->
82
 
83
 
84
+ <!-- compatibility_llamafile start -->
85
  ## Compatibility
86
 
87
+ These quantised llamafilev2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
88
 
89
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
90
 
 
103
 
104
  Refer to the Provided Files table below to see what files use which methods, and how.
105
  </details>
106
+ <!-- compatibility_llamafile end -->
107
 
108
+ <!-- README_llamafile.md-provided-files start -->
109
  ## Provided files
110
 
111
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
112
  | ---- | ---- | ---- | ---- | ---- | ----- |
113
+ | [mistral-7b-instruct-v0.2.Q2_K.llamafile](https://huggingface.co/jartine/Mistral-7B-Instruct-v0.2-llamafile/blob/main/mistral-7b-instruct-v0.2.Q2_K.llamafile) | Q2_K | 2 | 3.08 GB| 5.58 GB | smallest, significant quality loss - not recommended for most purposes |
114
+ | [mistral-7b-instruct-v0.2.Q3_K_S.llamafile](https://huggingface.co/jartine/Mistral-7B-Instruct-v0.2-llamafile/blob/main/mistral-7b-instruct-v0.2.Q3_K_S.llamafile) | Q3_K_S | 3 | 3.16 GB| 5.66 GB | very small, high quality loss |
115
+ | [mistral-7b-instruct-v0.2.Q3_K_M.llamafile](https://huggingface.co/jartine/Mistral-7B-Instruct-v0.2-llamafile/blob/main/mistral-7b-instruct-v0.2.Q3_K_M.llamafile) | Q3_K_M | 3 | 3.52 GB| 6.02 GB | very small, high quality loss |
116
+ | [mistral-7b-instruct-v0.2.Q3_K_L.llamafile](https://huggingface.co/jartine/Mistral-7B-Instruct-v0.2-llamafile/blob/main/mistral-7b-instruct-v0.2.Q3_K_L.llamafile) | Q3_K_L | 3 | 3.82 GB| 6.32 GB | small, substantial quality loss |
117
+ | [mistral-7b-instruct-v0.2.Q4_0.llamafile](https://huggingface.co/jartine/Mistral-7B-Instruct-v0.2-llamafile/blob/main/mistral-7b-instruct-v0.2.Q4_0.llamafile) | Q4_0 | 4 | 4.11 GB| 6.61 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
118
+ | [mistral-7b-instruct-v0.2.Q4_K_S.llamafile](https://huggingface.co/jartine/Mistral-7B-Instruct-v0.2-llamafile/blob/main/mistral-7b-instruct-v0.2.Q4_K_S.llamafile) | Q4_K_S | 4 | 4.14 GB| 6.64 GB | small, greater quality loss |
119
+ | [mistral-7b-instruct-v0.2.Q4_K_M.llamafile](https://huggingface.co/jartine/Mistral-7B-Instruct-v0.2-llamafile/blob/main/mistral-7b-instruct-v0.2.Q4_K_M.llamafile) | Q4_K_M | 4 | 4.37 GB| 6.87 GB | medium, balanced quality - recommended |
120
+ | [mistral-7b-instruct-v0.2.Q5_0.llamafile](https://huggingface.co/jartine/Mistral-7B-Instruct-v0.2-llamafile/blob/main/mistral-7b-instruct-v0.2.Q5_0.llamafile) | Q5_0 | 5 | 5.00 GB| 7.50 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
121
+ | [mistral-7b-instruct-v0.2.Q5_K_S.llamafile](https://huggingface.co/jartine/Mistral-7B-Instruct-v0.2-llamafile/blob/main/mistral-7b-instruct-v0.2.Q5_K_S.llamafile) | Q5_K_S | 5 | 5.00 GB| 7.50 GB | large, low quality loss - recommended |
122
+ | [mistral-7b-instruct-v0.2.Q5_K_M.llamafile](https://huggingface.co/jartine/Mistral-7B-Instruct-v0.2-llamafile/blob/main/mistral-7b-instruct-v0.2.Q5_K_M.llamafile) | Q5_K_M | 5 | 5.13 GB| 7.63 GB | large, very low quality loss - recommended |
123
+ | [mistral-7b-instruct-v0.2.Q6_K.llamafile](https://huggingface.co/jartine/Mistral-7B-Instruct-v0.2-llamafile/blob/main/mistral-7b-instruct-v0.2.Q6_K.llamafile) | Q6_K | 6 | 5.94 GB| 8.44 GB | very large, extremely low quality loss |
124
+ | [mistral-7b-instruct-v0.2.Q8_0.llamafile](https://huggingface.co/jartine/Mistral-7B-Instruct-v0.2-llamafile/blob/main/mistral-7b-instruct-v0.2.Q8_0.llamafile) | Q8_0 | 8 | 7.70 GB| 10.20 GB | very large, extremely low quality loss - not recommended |
125
 
126
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
127
 
128
 
129
 
130
+ <!-- README_llamafile.md-provided-files end -->
131
 
132
+ <!-- README_llamafile.md-how-to-download start -->
133
+ ## How to download llamafile files
134
 
135
  **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
136
 
 
142
 
143
  ### In `text-generation-webui`
144
 
145
+ Under Download Model, you can enter the model repo: jartine/Mistral-7B-Instruct-v0.2-llamafile and below it, a specific filename to download, such as: mistral-7b-instruct-v0.2.Q4_K_M.llamafile.
146
 
147
  Then click Download.
148
 
 
157
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
158
 
159
  ```shell
160
+ huggingface-cli download jartine/Mistral-7B-Instruct-v0.2-llamafile mistral-7b-instruct-v0.2.Q4_K_M.llamafile --local-dir . --local-dir-use-symlinks False
161
  ```
162
 
163
  <details>
 
166
  You can also download multiple files at once with a pattern:
167
 
168
  ```shell
169
+ huggingface-cli download jartine/Mistral-7B-Instruct-v0.2-llamafile --local-dir . --local-dir-use-symlinks False --include='*Q4_K*llamafile'
170
  ```
171
 
172
  For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
 
180
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
181
 
182
  ```shell
183
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download jartine/Mistral-7B-Instruct-v0.2-llamafile mistral-7b-instruct-v0.2.Q4_K_M.llamafile --local-dir . --local-dir-use-symlinks False
184
  ```
185
 
186
  Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
187
  </details>
188
+ <!-- README_llamafile.md-how-to-download end -->
189
 
190
+ <!-- README_llamafile.md-how-to-run start -->
191
  ## Example `llama.cpp` command
192
 
193
  Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
194
 
195
  ```shell
196
+ ./main -ngl 35 -m mistral-7b-instruct-v0.2.Q4_K_M.llamafile --color -c 32768 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<s>[INST] {prompt} [/INST]"
197
  ```
198
 
199
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
200
 
201
+ Change `-c 32768` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the llamafile file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
202
 
203
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
204
 
 
210
 
211
  ## How to run from Python code
212
 
213
+ You can use llamafile models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
214
 
215
  ### How to load this model in Python code, using llama-cpp-python
216
 
 
246
 
247
  # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
248
  llm = Llama(
249
+ model_path="./mistral-7b-instruct-v0.2.Q4_K_M.llamafile", # Download the model file first
250
  n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources
251
  n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
252
  n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
 
262
 
263
  # Chat Completion API
264
 
265
+ llm = Llama(model_path="./mistral-7b-instruct-v0.2.Q4_K_M.llamafile", chat_format="llama-2") # Set chat_format according to the model you are using
266
  llm.create_chat_completion(
267
  messages = [
268
  {"role": "system", "content": "You are a story writing assistant."},
 
281
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
282
  * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
283
 
284
+ <!-- README_llamafile.md-how-to-run end -->
285
 
286
  <!-- footer start -->
287
  <!-- 200823 -->
 
289
 
290
  For further support, and discussions on these models and AI in general, join us at:
291
 
292
+ [jartine AI's Discord server](https://discord.gg/FwAVVu7eJ4)
293
 
294
  ## Thanks, and how to contribute
295
 
 
296
 
 
297
 
298
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
299
 
300
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
301
 
 
302
 
 
 
303
 
 
304
 
 
305
 
306
 
 
307
 
308
+ And thank you again to mozilla for their generous grant.
309
 
310
  <!-- footer end -->
311