--- library_name: transformers tags: [] --- Inference ```python import random import json def generate_random_data(): return { "Users": random.randint(5, 20), "Groups": random.randint(10, 30), "Projects/Repositories": random.randint(4000, 5000), "Scans": random.randint(40, 100), "Lines_of_Code": random.randint(25000000, 35000000), "Vulnerabilities": random.randint(7000, 8000), "False_Positives": random.randint(10, 30), "True_Positives": random.randint(150, 200), "Confirmed_Vulnerabilities": { "Secret": random.randint(0, 200), "PII": random.randint(0, 200), "SAST": random.randint(0, 200), "SCA": random.randint(0, 200), "IaC": random.randint(0, 200), "Container": random.randint(0, 200), "API": random.randint(0, 200), "Compliance": random.randint(0, 200), "Malware": random.randint(0, 225) }, "Trend_Percentages": { "Scans": round(random.uniform(-100, +100), 2), "Lines_of_Code": round(random.uniform(-100, -100), 2), "Vulnerabilities": round(random.uniform(-100, -100), 2), "False_Positives": round(random.uniform(-100, 1000), 2), "True_Positives": round(random.uniform(-100, 100), 2), "Secret": round(random.uniform(-100, 1500), 2), "PII": round(random.uniform(-100, 1500), 2), "SAST": round(random.uniform(-100, 1500), 2), "SCA": round(random.uniform(-100, 1500), 2), "IaC": round(random.uniform(-100, 1500), 2), "Compliance": round(random.uniform(-100, 1500), 2), "Malware": round(random.uniform(-100, 1500), 2), } } def json_to_semi_structured_text(data): try: data = json.loads(data.replace("'",'"')) except: pass """ Convert JSON data into a semi-structured text format for training T5-Flan. Args: data (dict): The JSON object to convert. Returns: str: Semi-structured text representation of the JSON. """ text_output = [] for key, value in data.items(): if isinstance(value, dict): # Handle nested dictionaries text_output.append(f"{key.capitalize()}:") for sub_key, sub_value in value.items(): text_output.append(f"- {sub_key}: {sub_value}") else: # Direct key-value pairs text_output.append(f"{key.replace('_', ' ').capitalize()}: {value}") return "\n".join(text_output) ``` ```python # Load model directly from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("Mr-Vicky-01/T5-data-reasoning") model = AutoModelForSeq2SeqLM.from_pretrained("Mr-Vicky-01/T5-data-reasoning") data_inp = json_to_semi_structured_text(generate_random_data()) inp = "Summarize and reason: " + data_inp import time start = time.time() inputs = tokenizer(inp, return_tensors="pt",truncation=True) model.to(device) inputs = inputs.to(device) outputs = model.generate(**inputs,max_length=256,do_sample=False) answer = tokenizer.decode(outputs[0]) print(answer) end = time.time() print(f"Time taken: {end - start}") print('\n\n') print("input: "+inp) ```