MrDivakaruni commited on
Commit
3abcbc4
1 Parent(s): 8a76301

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1012.87 +/- 86.23
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3bde242072ffcc0f780f298ad2f5113950ca8b8bfe2c1537e40d2a7a5c36e6c0
3
+ size 129256
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff953b01d30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff953b01dc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff953b01e50>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff953b01ee0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff953b01f70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff953b06040>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff953b060d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff953b06160>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff953b061f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff953b06280>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff953b06310>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff953b063a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7ff953afb9c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1675578208293701816,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKFCKj9mNRA+Q7kHP+3hcj9lrQU/5IH8vt99w73e3di+E1HhPminiz6PbYg/xkimPzUi5L81bXk+cNc5P0JNu7/i2HW/gxHAPp8Mlr0aL8c/xXW5P/gdU71Kzgk/7nfdv1wTgT9wcwLAPZe0PsM1z7+TOdQ+ztqBP6mZ176E1om+HL48P/mdcT7CI6g+YWXivqK5ij9hQyS8LvqOP7aeIj8Jg3q/BIzlvoX5nz002KC/x+B3vkSK3D4xIrs+vqMoP1MlYD989hu/FyNHP8Xw4T1cE4E/cHMCwD2XtD6aIx4/xEqmP0Kt8D1EHQs/hhrkPgo/4j8RYKs/rKBdP8JzhL+ltYo/oDJGPC3fGz+3EwPA6O60vcX7hT8hp5K/aFdtvcxPvD5m9aI+XjAPPyFp3T7i6GW+XdJ5v5Eetz9kDGO+3919v7Mw+z49l7Q+miMeP3DrAD9AjwM/6ZyAPucLGD+HiDA/h89Kv3RMQz4TMQi/67CKP3j5tbv7mYs/H+C+P+73KL7sv2m/VLAyPyMDTL/IspW/sShXvYlylz4kFrM/hE+wP6UXCT+Zw2I/5G0kP1wTgT9wcwLAPZe0PsM1z7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD0Lii1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFYHHPQAAAAC1v+C/AAAAACpTP70AAAAA4tjjPwAAAABYe0e8AAAAANhU/D8AAAAAXkkGvgAAAABCNe2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGeRWNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgI8Pjz0AAAAA39ngvwAAAADIt7+9AAAAACxP/z8AAAAA6hZ7PQAAAAA3gfY/AAAAAFUL4b0AAAAAnlL1vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6MtTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDxtAC+AAAAAESJ3b8AAAAAZlVjvQAAAABGk/I/AAAAAMvPsD0AAAAAsQjxPwAAAADWC5a9AAAAAFAA9r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUO6a2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATy0hPQAAAACwtfu/AAAAAPzcSD0AAAAAB+z7PwAAAAAjIgq+AAAAAIW32T8AAAAAPuyhPQAAAACOFdm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIfvZhMJyACMAWyUTegDjAF0lEdAqlBq9oN/fHV9lChoBkdAhi2NLcsUZmgHTegDaAhHQKpQqs189fV1fZQoaAZHQIsgkuDjBEdoB03oA2gIR0CqULPcrRShdX2UKGgGR0CMLsO+7Dl6aAdN6ANoCEdAqlpcrTYukHV9lChoBkdAgsYN0V8CxWgHTegDaAhHQKpfSksSTQp1fZQoaAZHQItJ4WpIczZoB03oA2gIR0CqX7Gg8KXwdX2UKGgGR0CQoq5yU9pzaAdN6ANoCEdAql+/nnuAqnV9lChoBkdAhu5O14Pf9GgHTegDaAhHQKpozccENfB1fZQoaAZHQH2zlv60pmVoB03oA2gIR0CqbAL9MsYmdX2UKGgGR0B43M/keZG8aAdN6ANoCEdAqmxFuDSPVHV9lChoBkdAhQsMcABDHGgHTegDaAhHQKpsUCyyD7J1fZQoaAZHQHyAREv0yxloB03oA2gIR0CqdXvy08eTdX2UKGgGR0CDxunUlRgraAdN6ANoCEdAqnpLEk0JnnV9lChoBkdAho6/WDpTuWgHTegDaAhHQKp6soXsPat1fZQoaAZHQIP6LgGbCrNoB03oA2gIR0CqesAyVObidX2UKGgGR0CIZ9dKNAC5aAdN6ANoCEdAqoSADRtxdnV9lChoBkdAiLojtoi9qWgHTegDaAhHQKqHui+tbLV1fZQoaAZHQIG+bAxi5NJoB03oA2gIR0CqiAJF9a2XdX2UKGgGR0CN4EDOkcjraAdN6ANoCEdAqogMKkVN6HV9lChoBkdAiu3jjrAxjGgHTegDaAhHQKqQ8hdt2s91fZQoaAZHQInEYWYWtU5oB03oA2gIR0CqlTUTtb9qdX2UKGgGR0CPrX4KQaJiaAdN6ANoCEdAqpWaU3XI2nV9lChoBkdAhgVwoTfzjGgHTegDaAhHQKqVqCo0hvB1fZQoaAZHQIZRf6O5rgxoB03oA2gIR0CqoFY5T6zmdX2UKGgGR0CHKMZydWhiaAdN6ANoCEdAqqOWh24d63V9lChoBkdAicrSZBsyi2gHTegDaAhHQKqj1yzXz191fZQoaAZHQIoDHr8iwB5oB03oA2gIR0Cqo+AVGkN4dX2UKGgGR0CNEZBrvb48aAdN6ANoCEdAqqzDHU+cIHV9lChoBkdAikXcqe9SM2gHTegDaAhHQKqwj4oqkM11fZQoaAZHQJCTfJeVs1toB03oA2gIR0CqsPu0LMLXdX2UKGgGR0CKd/VPN3W4aAdN6ANoCEdAqrEJ5s0pE3V9lChoBkdAjJNNzjm0V2gHTegDaAhHQKq8VIhhYvF1fZQoaAZHQI5wTncL0BhoB03oA2gIR0Cqv4FMh5gPdX2UKGgGR0CBqQYBNmDlaAdN6ANoCEdAqr/AhyKekHV9lChoBkdAjGaalDWsimgHTegDaAhHQKq/yU9pyp91fZQoaAZHQIkWQXKr7wdoB03oA2gIR0CqyKDpC8e0dX2UKGgGR0CJ4Dpj+aScaAdN6ANoCEdAqsvNZkkKNXV9lChoBkdAjiU28IzFdmgHTegDaAhHQKrMGYekpJB1fZQoaAZHQIpuoNkOI69oB03oA2gIR0CqzCdKdxyXdX2UKGgGR8AiPTvRZ2ZBaAdLu2gIR0Cqz4N4JNTMdX2UKGgGR0CJ1nFfAsTWaAdN6ANoCEdAqtgYAIY3vXV9lChoBkdAipzxWLgn+mgHTegDaAhHQKrbVmU4aP11fZQoaAZHQIlQCzollbxoB03oA2gIR0Cq25x0U47zdX2UKGgGR0CLtsWj4593aAdN6ANoCEdAqt393+uNgnV9lChoBkdAisAsIu5BkmgHTegDaAhHQKrkjqyGBWh1fZQoaAZHQI2tMa6z3RJoB03oA2gIR0Cq58oe5nUUdX2UKGgGR0CM2HWH1vl2aAdN6ANoCEdAqugQlnh86XV9lChoBkdAieCsHSnccmgHTegDaAhHQKrrEs+V1Ol1fZQoaAZHQI9494keIVNoB03oA2gIR0Cq9B+chC+ldX2UKGgGR0CNyJ+ee4CqaAdN6ANoCEdAqvdMDjin53V9lChoBkdAjaNgbyYoiWgHTegDaAhHQKr3jUOuq3p1fZQoaAZHQIqpaE+PikxoB03oA2gIR0Cq+dnTqjagdX2UKGgGR0CQQweQ+2VnaAdN6ANoCEdAqwBXPkaMrHV9lChoBkdAjYoYbS7XhGgHTegDaAhHQKsDnAZ88cN1fZQoaAZHQJAadYyO7xxoB03oA2gIR0CrA90PH1e0dX2UKGgGR0CLa1gPVd5ZaAdN6ANoCEdAqwZUJ6Y3N3V9lChoBkdAkamkd7v5QGgHTegDaAhHQKsP8Ucn3L51fZQoaAZHQJDuHj/+85FoB03oA2gIR0CrEyhPj4pMdX2UKGgGR0CQiPjh1klNaAdN6ANoCEdAqxNpTCLuQnV9lChoBkdAjfpjTSb6QGgHTegDaAhHQKsVzI2fkFR1fZQoaAZHQJDJlc6eXiRoB03oA2gIR0CrHEhHskY5dX2UKGgGR0CQOdr7O3UhaAdN6ANoCEdAqx905OrQxHV9lChoBkdAj2Qus1baAWgHTegDaAhHQKsftAJswcp1fZQoaAZHQJHR14ptrKxoB03oA2gIR0CrIfs7dSEUdX2UKGgGR0CQHKCrcTJyaAdN6ANoCEdAqysvZK3/gnV9lChoBkdAiSwNpEhJRWgHTegDaAhHQKsu6XTEzft1fZQoaAZHQJACVSUC7shoB03oA2gIR0CrLyrwF1SwdX2UKGgGR0CR1XxsVLzxaAdN6ANoCEdAqzF6GQCCBnV9lChoBkdAjb5V76YVqWgHTegDaAhHQKs33rSE12t1fZQoaAZHQJIjQQ04zadoB03oA2gIR0CrOxSXD3uedX2UKGgGR0CPSWPAfuCxaAdN6ANoCEdAqztXB3zMA3V9lChoBkdAkN71c+qzaGgHTegDaAhHQKs9sX0Gu9x1fZQoaAZHQI31Q4lyBCloB03oA2gIR0CrRioZAIIGdX2UKGgGR0CLBHKHwgDBaAdN6ANoCEdAq0qqKYRdyHV9lChoBkdAjVrVn/T9bWgHTegDaAhHQKtK7g2qDK51fZQoaAZHQIw2UBIWgvloB03oA2gIR0CrTUUS7GvPdX2UKGgGR0CQPczmfXf7aAdN6ANoCEdAq1PulXRw63V9lChoBkdAkaGfFR51NmgHTegDaAhHQKtXOPo3aSN1fZQoaAZHQJG+vpcHGCJoB03oA2gIR0CrV3sIE8q4dX2UKGgGR0CTMWsSTQmeaAdN6ANoCEdAq1nQ/zJ6p3V9lChoBkdAkUBLDIikf2gHTegDaAhHQKthfMvAXVN1fZQoaAZHQJPeAtdzGPxoB03oA2gIR0CrZnW4uscRdX2UKGgGR0CSE5k0Jng6aAdN6ANoCEdAq2bcL2HtW3V9lChoBkdAkQORKg7HQ2gHTegDaAhHQKtpRC1JDmd1fZQoaAZHQJIBercTJyRoB03oA2gIR0Crb+EAxSHedX2UKGgGR0CUEuyuIRAbaAdN6ANoCEdAq3MN9a2Wp3V9lChoBkdAkd1YLw4KhWgHTegDaAhHQKtzU2DQJHB1fZQoaAZHQJG+ao1k1/FoB03oA2gIR0CrdaxdpqREdX2UKGgGR0CMXcITGo73aAdN6ANoCEdAq3zD4FiazHV9lChoBkdAf9y/ag261GgHTegDaAhHQKuBf3Roh6l1fZQoaAZHQJCXvWWhRIloB03oA2gIR0CrgeUY8+zMdX2UKGgGR0CNerbxEv0zaAdN6ANoCEdAq4TsC5mRNnV9lChoBkdAhvyvStvGZWgHTegDaAhHQKuLYxLTQVt1fZQoaAZHQJGjtpvgm7doB03oA2gIR0Crjp+XZ5AydX2UKGgGR0CKtXVbRne0aAdN6ANoCEdAq47g79ycTnV9lChoBkdAkd0pflZHNGgHTegDaAhHQKuRMobXHzZ1fZQoaAZHQJEPHoxHoX9oB03oA2gIR0Crl53Gff4zdX2UKGgGR0COTapCKJl8aAdN6ANoCEdAq5wStPpIMHV9lChoBkdAkEindO6/ZmgHTegDaAhHQKuceWdmQKd1fZQoaAZHQI25XWYnfEZoB03oA2gIR0CroB02UB4mdWUu"
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6eea609fccdd378e52598cc2cfdcaf8059d49a912466128fa79230fb860d9516
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de8155f2e5e357cedb296a9bcce6f597d4af615179a0874c657ee5d6bd3fc2c3
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff953b01d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff953b01dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff953b01e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff953b01ee0>", "_build": "<function ActorCriticPolicy._build at 0x7ff953b01f70>", "forward": "<function ActorCriticPolicy.forward at 0x7ff953b06040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff953b060d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff953b06160>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff953b061f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff953b06280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff953b06310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff953b063a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff953afb9c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675578208293701816, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKFCKj9mNRA+Q7kHP+3hcj9lrQU/5IH8vt99w73e3di+E1HhPminiz6PbYg/xkimPzUi5L81bXk+cNc5P0JNu7/i2HW/gxHAPp8Mlr0aL8c/xXW5P/gdU71Kzgk/7nfdv1wTgT9wcwLAPZe0PsM1z7+TOdQ+ztqBP6mZ176E1om+HL48P/mdcT7CI6g+YWXivqK5ij9hQyS8LvqOP7aeIj8Jg3q/BIzlvoX5nz002KC/x+B3vkSK3D4xIrs+vqMoP1MlYD989hu/FyNHP8Xw4T1cE4E/cHMCwD2XtD6aIx4/xEqmP0Kt8D1EHQs/hhrkPgo/4j8RYKs/rKBdP8JzhL+ltYo/oDJGPC3fGz+3EwPA6O60vcX7hT8hp5K/aFdtvcxPvD5m9aI+XjAPPyFp3T7i6GW+XdJ5v5Eetz9kDGO+3919v7Mw+z49l7Q+miMeP3DrAD9AjwM/6ZyAPucLGD+HiDA/h89Kv3RMQz4TMQi/67CKP3j5tbv7mYs/H+C+P+73KL7sv2m/VLAyPyMDTL/IspW/sShXvYlylz4kFrM/hE+wP6UXCT+Zw2I/5G0kP1wTgT9wcwLAPZe0PsM1z7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD0Lii1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFYHHPQAAAAC1v+C/AAAAACpTP70AAAAA4tjjPwAAAABYe0e8AAAAANhU/D8AAAAAXkkGvgAAAABCNe2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGeRWNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgI8Pjz0AAAAA39ngvwAAAADIt7+9AAAAACxP/z8AAAAA6hZ7PQAAAAA3gfY/AAAAAFUL4b0AAAAAnlL1vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6MtTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDxtAC+AAAAAESJ3b8AAAAAZlVjvQAAAABGk/I/AAAAAMvPsD0AAAAAsQjxPwAAAADWC5a9AAAAAFAA9r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUO6a2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATy0hPQAAAACwtfu/AAAAAPzcSD0AAAAAB+z7PwAAAAAjIgq+AAAAAIW32T8AAAAAPuyhPQAAAACOFdm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIfvZhMJyACMAWyUTegDjAF0lEdAqlBq9oN/fHV9lChoBkdAhi2NLcsUZmgHTegDaAhHQKpQqs189fV1fZQoaAZHQIsgkuDjBEdoB03oA2gIR0CqULPcrRShdX2UKGgGR0CMLsO+7Dl6aAdN6ANoCEdAqlpcrTYukHV9lChoBkdAgsYN0V8CxWgHTegDaAhHQKpfSksSTQp1fZQoaAZHQItJ4WpIczZoB03oA2gIR0CqX7Gg8KXwdX2UKGgGR0CQoq5yU9pzaAdN6ANoCEdAql+/nnuAqnV9lChoBkdAhu5O14Pf9GgHTegDaAhHQKpozccENfB1fZQoaAZHQH2zlv60pmVoB03oA2gIR0CqbAL9MsYmdX2UKGgGR0B43M/keZG8aAdN6ANoCEdAqmxFuDSPVHV9lChoBkdAhQsMcABDHGgHTegDaAhHQKpsUCyyD7J1fZQoaAZHQHyAREv0yxloB03oA2gIR0CqdXvy08eTdX2UKGgGR0CDxunUlRgraAdN6ANoCEdAqnpLEk0JnnV9lChoBkdAho6/WDpTuWgHTegDaAhHQKp6soXsPat1fZQoaAZHQIP6LgGbCrNoB03oA2gIR0CqesAyVObidX2UKGgGR0CIZ9dKNAC5aAdN6ANoCEdAqoSADRtxdnV9lChoBkdAiLojtoi9qWgHTegDaAhHQKqHui+tbLV1fZQoaAZHQIG+bAxi5NJoB03oA2gIR0CqiAJF9a2XdX2UKGgGR0CN4EDOkcjraAdN6ANoCEdAqogMKkVN6HV9lChoBkdAiu3jjrAxjGgHTegDaAhHQKqQ8hdt2s91fZQoaAZHQInEYWYWtU5oB03oA2gIR0CqlTUTtb9qdX2UKGgGR0CPrX4KQaJiaAdN6ANoCEdAqpWaU3XI2nV9lChoBkdAhgVwoTfzjGgHTegDaAhHQKqVqCo0hvB1fZQoaAZHQIZRf6O5rgxoB03oA2gIR0CqoFY5T6zmdX2UKGgGR0CHKMZydWhiaAdN6ANoCEdAqqOWh24d63V9lChoBkdAicrSZBsyi2gHTegDaAhHQKqj1yzXz191fZQoaAZHQIoDHr8iwB5oB03oA2gIR0Cqo+AVGkN4dX2UKGgGR0CNEZBrvb48aAdN6ANoCEdAqqzDHU+cIHV9lChoBkdAikXcqe9SM2gHTegDaAhHQKqwj4oqkM11fZQoaAZHQJCTfJeVs1toB03oA2gIR0CqsPu0LMLXdX2UKGgGR0CKd/VPN3W4aAdN6ANoCEdAqrEJ5s0pE3V9lChoBkdAjJNNzjm0V2gHTegDaAhHQKq8VIhhYvF1fZQoaAZHQI5wTncL0BhoB03oA2gIR0Cqv4FMh5gPdX2UKGgGR0CBqQYBNmDlaAdN6ANoCEdAqr/AhyKekHV9lChoBkdAjGaalDWsimgHTegDaAhHQKq/yU9pyp91fZQoaAZHQIkWQXKr7wdoB03oA2gIR0CqyKDpC8e0dX2UKGgGR0CJ4Dpj+aScaAdN6ANoCEdAqsvNZkkKNXV9lChoBkdAjiU28IzFdmgHTegDaAhHQKrMGYekpJB1fZQoaAZHQIpuoNkOI69oB03oA2gIR0CqzCdKdxyXdX2UKGgGR8AiPTvRZ2ZBaAdLu2gIR0Cqz4N4JNTMdX2UKGgGR0CJ1nFfAsTWaAdN6ANoCEdAqtgYAIY3vXV9lChoBkdAipzxWLgn+mgHTegDaAhHQKrbVmU4aP11fZQoaAZHQIlQCzollbxoB03oA2gIR0Cq25x0U47zdX2UKGgGR0CLtsWj4593aAdN6ANoCEdAqt393+uNgnV9lChoBkdAisAsIu5BkmgHTegDaAhHQKrkjqyGBWh1fZQoaAZHQI2tMa6z3RJoB03oA2gIR0Cq58oe5nUUdX2UKGgGR0CM2HWH1vl2aAdN6ANoCEdAqugQlnh86XV9lChoBkdAieCsHSnccmgHTegDaAhHQKrrEs+V1Ol1fZQoaAZHQI9494keIVNoB03oA2gIR0Cq9B+chC+ldX2UKGgGR0CNyJ+ee4CqaAdN6ANoCEdAqvdMDjin53V9lChoBkdAjaNgbyYoiWgHTegDaAhHQKr3jUOuq3p1fZQoaAZHQIqpaE+PikxoB03oA2gIR0Cq+dnTqjagdX2UKGgGR0CQQweQ+2VnaAdN6ANoCEdAqwBXPkaMrHV9lChoBkdAjYoYbS7XhGgHTegDaAhHQKsDnAZ88cN1fZQoaAZHQJAadYyO7xxoB03oA2gIR0CrA90PH1e0dX2UKGgGR0CLa1gPVd5ZaAdN6ANoCEdAqwZUJ6Y3N3V9lChoBkdAkamkd7v5QGgHTegDaAhHQKsP8Ucn3L51fZQoaAZHQJDuHj/+85FoB03oA2gIR0CrEyhPj4pMdX2UKGgGR0CQiPjh1klNaAdN6ANoCEdAqxNpTCLuQnV9lChoBkdAjfpjTSb6QGgHTegDaAhHQKsVzI2fkFR1fZQoaAZHQJDJlc6eXiRoB03oA2gIR0CrHEhHskY5dX2UKGgGR0CQOdr7O3UhaAdN6ANoCEdAqx905OrQxHV9lChoBkdAj2Qus1baAWgHTegDaAhHQKsftAJswcp1fZQoaAZHQJHR14ptrKxoB03oA2gIR0CrIfs7dSEUdX2UKGgGR0CQHKCrcTJyaAdN6ANoCEdAqysvZK3/gnV9lChoBkdAiSwNpEhJRWgHTegDaAhHQKsu6XTEzft1fZQoaAZHQJACVSUC7shoB03oA2gIR0CrLyrwF1SwdX2UKGgGR0CR1XxsVLzxaAdN6ANoCEdAqzF6GQCCBnV9lChoBkdAjb5V76YVqWgHTegDaAhHQKs33rSE12t1fZQoaAZHQJIjQQ04zadoB03oA2gIR0CrOxSXD3uedX2UKGgGR0CPSWPAfuCxaAdN6ANoCEdAqztXB3zMA3V9lChoBkdAkN71c+qzaGgHTegDaAhHQKs9sX0Gu9x1fZQoaAZHQI31Q4lyBCloB03oA2gIR0CrRioZAIIGdX2UKGgGR0CLBHKHwgDBaAdN6ANoCEdAq0qqKYRdyHV9lChoBkdAjVrVn/T9bWgHTegDaAhHQKtK7g2qDK51fZQoaAZHQIw2UBIWgvloB03oA2gIR0CrTUUS7GvPdX2UKGgGR0CQPczmfXf7aAdN6ANoCEdAq1PulXRw63V9lChoBkdAkaGfFR51NmgHTegDaAhHQKtXOPo3aSN1fZQoaAZHQJG+vpcHGCJoB03oA2gIR0CrV3sIE8q4dX2UKGgGR0CTMWsSTQmeaAdN6ANoCEdAq1nQ/zJ6p3V9lChoBkdAkUBLDIikf2gHTegDaAhHQKthfMvAXVN1fZQoaAZHQJPeAtdzGPxoB03oA2gIR0CrZnW4uscRdX2UKGgGR0CSE5k0Jng6aAdN6ANoCEdAq2bcL2HtW3V9lChoBkdAkQORKg7HQ2gHTegDaAhHQKtpRC1JDmd1fZQoaAZHQJIBercTJyRoB03oA2gIR0Crb+EAxSHedX2UKGgGR0CUEuyuIRAbaAdN6ANoCEdAq3MN9a2Wp3V9lChoBkdAkd1YLw4KhWgHTegDaAhHQKtzU2DQJHB1fZQoaAZHQJG+ao1k1/FoB03oA2gIR0CrdaxdpqREdX2UKGgGR0CMXcITGo73aAdN6ANoCEdAq3zD4FiazHV9lChoBkdAf9y/ag261GgHTegDaAhHQKuBf3Roh6l1fZQoaAZHQJCXvWWhRIloB03oA2gIR0CrgeUY8+zMdX2UKGgGR0CNerbxEv0zaAdN6ANoCEdAq4TsC5mRNnV9lChoBkdAhvyvStvGZWgHTegDaAhHQKuLYxLTQVt1fZQoaAZHQJGjtpvgm7doB03oA2gIR0Crjp+XZ5AydX2UKGgGR0CKtXVbRne0aAdN6ANoCEdAq47g79ycTnV9lChoBkdAkd0pflZHNGgHTegDaAhHQKuRMobXHzZ1fZQoaAZHQJEPHoxHoX9oB03oA2gIR0Crl53Gff4zdX2UKGgGR0COTapCKJl8aAdN6ANoCEdAq5wStPpIMHV9lChoBkdAkEindO6/ZmgHTegDaAhHQKuceWdmQKd1fZQoaAZHQI25XWYnfEZoB03oA2gIR0CroB02UB4mdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ca1c536d5ef38eed1667d4e31333ae9f4124980074067fbf202fd236c048ea2
3
+ size 1059605
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1012.8747178975784, "std_reward": 86.22610238148818, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-05T07:30:00.332973"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f134e50233550c354256a9dc4de230dd1bd3e57de6408dc5c9d8f81fd6ca1614
3
+ size 2136