|
from typing import Dict, List, Any |
|
from llama_cpp import Llama |
|
import torch |
|
|
|
MAX_TOKENS=8192 |
|
GPU_LAYERS=99 |
|
|
|
class EndpointHandler(): |
|
def __init__(self, data): |
|
n_gpu_layers = GPU_LAYERS |
|
if not torch.cuda.is_available(): |
|
n_gpu_layers = 0 |
|
self.model = Llama.from_pretrained("lmstudio-ai/gemma-2b-it-GGUF", filename="gemma-2b-it-q4_k_m.gguf", n_ctx=8192, cache_dir="./", n_gpu_layers=n_gpu_layers) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
inputs = data.pop("inputs", "") |
|
temperature = data.pop("temperature", None) |
|
if not temperature: |
|
temperature = data.pop("temp", 0.33) |
|
if temperature > 3 or temperature < 0: |
|
return json.dumps({ |
|
"status": "error", |
|
"reason": "invalid temperature ( 0.01 - 1.00 )" |
|
}) |
|
top_p = data.pop("top-p", 0.85) |
|
if top_p > 3 or top_p < 0: |
|
return json.dumps({ |
|
"status": "error", |
|
"reason": "invalid top percentage ( 0.01 - 1.00 )" |
|
}) |
|
top_k = data.pop("top-k", 42) |
|
if top_k > 100 or top_k < 0: |
|
return json.dumps({ |
|
"status": "error", |
|
"reason": "invalid top k ( 1 - 99 )" |
|
}) |
|
system_prompt = data.pop("system-prompt", "You are Gemma. Assist user with whatever they require, in a safe and moral manner.") |
|
format = data.pop("format", "<startofturn>system\n{system_prompt} <endoftext>\n<startofturn>user\n{prompt} <endofturn>\n<startofturn>model") |
|
try: |
|
format = format.format(system_prompt = system_prompt, prompt = inputs) |
|
except Exception as e: |
|
return json.dumps({ |
|
"status": "error", |
|
"reason": "invalid format" |
|
}) |
|
|
|
res = self.model(format, temperature=temperature, top_p=top_p, top_k=42) |
|
|
|
return res |