MrPotato commited on
Commit
a310541
·
1 Parent(s): ad51607

commit files to HF hub

Browse files
Files changed (3) hide show
  1. config.json +4 -0
  2. configuration_refseg.py +111 -0
  3. modeling_refseg.py +82 -0
config.json CHANGED
@@ -5,6 +5,10 @@
5
  "XLMRobertaForReferenceSegmentation"
6
  ],
7
  "attention_probs_dropout_prob": 0.1,
 
 
 
 
8
  "bos_token_id": 0,
9
  "classifier_dropout": null,
10
  "custom_pipelines": {
 
5
  "XLMRobertaForReferenceSegmentation"
6
  ],
7
  "attention_probs_dropout_prob": 0.1,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_refseg.XLMRobertaRefSegConfig",
10
+ "AutoModelForTokenClassification": "modeling_refseg.XLMRobertaForReferenceSegmentation"
11
+ },
12
  "bos_token_id": 0,
13
  "classifier_dropout": null,
14
  "custom_pipelines": {
configuration_refseg.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+
4
+ class XLMRobertaRefSegConfig(PretrainedConfig):
5
+ r"""
6
+ This is the configuration class to store the configuration of a [`XLMRobertaModel`] or a [`TFXLMRobertaModel`]. It
7
+ is used to instantiate a XLM-RoBERTa model according to the specified arguments, defining the model architecture.
8
+ Instantiating a configuration with the defaults will yield a similar configuration to that of the XLMRoBERTa
9
+ [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) architecture.
10
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
11
+ documentation from [`PretrainedConfig`] for more information.
12
+ Args:
13
+ vocab_size (`int`, *optional*, defaults to 30522):
14
+ Vocabulary size of the XLM-RoBERTa model. Defines the number of different tokens that can be represented by
15
+ the `inputs_ids` passed when calling [`XLMRobertaModel`] or [`TFXLMRobertaModel`].
16
+ hidden_size (`int`, *optional*, defaults to 768):
17
+ Dimensionality of the encoder layers and the pooler layer.
18
+ num_hidden_layers (`int`, *optional*, defaults to 12):
19
+ Number of hidden layers in the Transformer encoder.
20
+ num_attention_heads (`int`, *optional*, defaults to 12):
21
+ Number of attention heads for each attention layer in the Transformer encoder.
22
+ intermediate_size (`int`, *optional*, defaults to 3072):
23
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
24
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
25
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
26
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
27
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
28
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
29
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
30
+ The dropout ratio for the attention probabilities.
31
+ max_position_embeddings (`int`, *optional*, defaults to 512):
32
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
33
+ just in case (e.g., 512 or 1024 or 2048).
34
+ type_vocab_size (`int`, *optional*, defaults to 2):
35
+ The vocabulary size of the `token_type_ids` passed when calling [`XLMRobertaModel`] or
36
+ [`TFXLMRobertaModel`].
37
+ initializer_range (`float`, *optional*, defaults to 0.02):
38
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
39
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
40
+ The epsilon used by the layer normalization layers.
41
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
42
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
43
+ positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
44
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
45
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
46
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
47
+ is_decoder (`bool`, *optional*, defaults to `False`):
48
+ Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
49
+ use_cache (`bool`, *optional*, defaults to `True`):
50
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
51
+ relevant if `config.is_decoder=True`.
52
+ classifier_dropout (`float`, *optional*):
53
+ The dropout ratio for the classification head.
54
+ Examples:
55
+ ```python
56
+ >>> from transformers import XLMRobertaConfig, XLMRobertaModel
57
+ >>> # Initializing a XLM-RoBERTa xlm-roberta-base style configuration
58
+ >>> configuration = XLMRobertaConfig()
59
+ >>> # Initializing a model (with random weights) from the xlm-roberta-base style configuration
60
+ >>> model = XLMRobertaModel(configuration)
61
+ >>> # Accessing the model configuration
62
+ >>> configuration = model.config
63
+ ```"""
64
+ model_type = "xlm-roberta"
65
+
66
+ def __init__(
67
+ self,
68
+ vocab_size=250002,
69
+ hidden_size=1024,
70
+ num_hidden_layers=24,
71
+ num_attention_heads=16,
72
+ intermediate_size=4096,
73
+ hidden_act="gelu",
74
+ hidden_dropout_prob=0.1,
75
+ attention_probs_dropout_prob=0.1,
76
+ max_position_embeddings=514,
77
+ type_vocab_size=1,
78
+ initializer_range=0.02,
79
+ layer_norm_eps=1e-05,
80
+ pad_token_id=1,
81
+ bos_token_id=0,
82
+ eos_token_id=2,
83
+ position_embedding_type="absolute",
84
+ use_cache=True,
85
+ classifier_dropout=None,
86
+ num_labels_first=29,
87
+ num_labels_second=2,
88
+ alpha=0.5,
89
+ **kwargs
90
+ ):
91
+ super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
92
+
93
+ self.vocab_size = vocab_size
94
+ self.hidden_size = hidden_size
95
+ self.num_hidden_layers = num_hidden_layers
96
+ self.num_attention_heads = num_attention_heads
97
+ self.hidden_act = hidden_act
98
+ self.intermediate_size = intermediate_size
99
+ self.hidden_dropout_prob = hidden_dropout_prob
100
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
101
+ self.max_position_embeddings = max_position_embeddings
102
+ self.type_vocab_size = type_vocab_size
103
+ self.initializer_range = initializer_range
104
+ self.layer_norm_eps = layer_norm_eps
105
+ self.position_embedding_type = position_embedding_type
106
+ self.use_cache = use_cache
107
+ self.classifier_dropout = classifier_dropout
108
+ self.num_labels_first = num_labels_first
109
+ self.num_labels_second = num_labels_second
110
+ self.alpha = alpha
111
+ super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
modeling_refseg.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.models.xlm_roberta import XLMRobertaPreTrainedModel, XLMRobertaModel
2
+ from transformers.modeling_outputs import TokenClassifierOutput
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import CrossEntropyLoss
6
+ from typing import Optional, Tuple, Union
7
+
8
+
9
+ class XLMRobertaForReferenceSegmentation(XLMRobertaPreTrainedModel):
10
+ _keys_to_ignore_on_load_unexpected = [r"pooler"]
11
+ _keys_to_ignore_on_load_missing = [r"position_ids"]
12
+
13
+ def __init__(self, config):
14
+ super().__init__(config)
15
+ self.num_labels_first = config.num_labels_first
16
+ self.num_labels_second = config.num_labels_second
17
+ self.alpha = config.alpha
18
+
19
+ self.roberta = XLMRobertaModel(config, add_pooling_layer=False)
20
+ classifier_dropout = (
21
+ config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
22
+ )
23
+ self.dropout = nn.Dropout(classifier_dropout)
24
+ self.classifier_first = nn.Linear(config.hidden_size, self.num_labels_first)
25
+ self.classifier_second = nn.Linear(config.hidden_size, self.num_labels_second)
26
+
27
+ self.post_init()
28
+
29
+ def forward(
30
+ self,
31
+ input_ids: Optional[torch.LongTensor] = None,
32
+ attention_mask: Optional[torch.FloatTensor] = None,
33
+ token_type_ids: Optional[torch.LongTensor] = None,
34
+ position_ids: Optional[torch.LongTensor] = None,
35
+ head_mask: Optional[torch.FloatTensor] = None,
36
+ inputs_embeds: Optional[torch.FloatTensor] = None,
37
+ labels_first: Optional[torch.LongTensor] = None,
38
+ labels_second: Optional[torch.LongTensor] = None,
39
+ output_attentions: Optional[bool] = None,
40
+ output_hidden_states: Optional[bool] = None,
41
+ return_dict: Optional[bool] = None,
42
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
43
+ r"""
44
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
45
+ Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
46
+ """
47
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
48
+
49
+ outputs = self.roberta(
50
+ input_ids,
51
+ attention_mask=attention_mask,
52
+ token_type_ids=token_type_ids,
53
+ position_ids=position_ids,
54
+ head_mask=head_mask,
55
+ inputs_embeds=inputs_embeds,
56
+ output_attentions=output_attentions,
57
+ output_hidden_states=output_hidden_states,
58
+ return_dict=return_dict,
59
+ )
60
+
61
+ sequence_output = outputs[0]
62
+
63
+ sequence_output_first = self.dropout(sequence_output)
64
+ logits_first = self.classifier_first(sequence_output_first)
65
+
66
+ sequence_output_second = self.dropout(sequence_output)
67
+ logits_second = self.classifier_second(sequence_output_second)
68
+
69
+ loss = None
70
+ if labels_first is not None and labels_second is not None:
71
+ loss_fct_first = CrossEntropyLoss()
72
+ loss_fct_second = CrossEntropyLoss()
73
+ loss_first = loss_fct_first(logits_first.view(-1, self.num_labels_first), labels_first.view(-1))
74
+ loss_second = loss_fct_second(logits_second.view(-1, self.num_labels_second), labels_second.view(-1))
75
+ loss = loss_first + (self.alpha * loss_second)
76
+
77
+ return TokenClassifierOutput(
78
+ loss=loss,
79
+ logits=[logits_first, logits_second],
80
+ hidden_states=outputs.hidden_states,
81
+ attentions=outputs.attentions,
82
+ )