from transformers.models.xlm_roberta import XLMRobertaPreTrainedModel, XLMRobertaModel from transformers.modeling_outputs import TokenClassifierOutput import torch from torch import nn from torch.nn import CrossEntropyLoss from typing import Optional, Tuple, Union class XLMRobertaForReferenceSegmentation(XLMRobertaPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config): super().__init__(config) self.num_labels_first = config.num_labels_first self.num_labels_second = config.num_labels_second self.alpha = config.alpha self.roberta = XLMRobertaModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier_first = nn.Linear(config.hidden_size, self.num_labels_first) self.classifier_second = nn.Linear(config.hidden_size, self.num_labels_second) self.post_init() def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels_first: Optional[torch.LongTensor] = None, labels_second: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output_first = self.dropout(sequence_output) logits_first = self.classifier_first(sequence_output_first) sequence_output_second = self.dropout(sequence_output) logits_second = self.classifier_second(sequence_output_second) loss = None if labels_first is not None and labels_second is not None: loss_fct_first = CrossEntropyLoss() loss_fct_second = CrossEntropyLoss() loss_first = loss_fct_first(logits_first.view(-1, self.num_labels_first), labels_first.view(-1)) loss_second = loss_fct_second(logits_second.view(-1, self.num_labels_second), labels_second.view(-1)) loss = loss_first + (self.alpha * loss_second) return TokenClassifierOutput( loss=loss, logits=[logits_first, logits_second], hidden_states=outputs.hidden_states, attentions=outputs.attentions, )