Mrohit01 commited on
Commit
afe5f8d
1 Parent(s): a38569d

Model save

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/swinv2-base-patch4-window12to16-192to256-22kto1k-ft
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: 1_M_cards-swinv2-base-patch4-window12to16-192to256-22kto1k-ft-finetuned-v3
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/vjti_ai/huggingface/runs/11oybdf9)
17
+ # 1_M_cards-swinv2-base-patch4-window12to16-192to256-22kto1k-ft-finetuned-v3
18
+
19
+ This model is a fine-tuned version of [microsoft/swinv2-base-patch4-window12to16-192to256-22kto1k-ft](https://huggingface.co/microsoft/swinv2-base-patch4-window12to16-192to256-22kto1k-ft) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 1.1701
22
+ - Accuracy: 0.5118
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 5e-05
42
+ - train_batch_size: 128
43
+ - eval_batch_size: 128
44
+ - seed: 42
45
+ - gradient_accumulation_steps: 4
46
+ - total_train_batch_size: 512
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - lr_scheduler_warmup_ratio: 0.1
50
+ - num_epochs: 10
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
55
+ |:-------------:|:------:|:-----:|:---------------:|:--------:|
56
+ | 1.3156 | 0.9995 | 1633 | 1.2976 | 0.4477 |
57
+ | 1.2943 | 1.9997 | 3267 | 1.2443 | 0.4668 |
58
+ | 1.2411 | 2.9998 | 4901 | 1.2229 | 0.4787 |
59
+ | 1.2368 | 4.0 | 6535 | 1.1967 | 0.4901 |
60
+ | 1.1973 | 4.9995 | 8168 | 1.1910 | 0.4927 |
61
+ | 1.2124 | 5.9997 | 9802 | 1.1811 | 0.4989 |
62
+ | 1.1753 | 6.9998 | 11436 | 1.1685 | 0.5062 |
63
+ | 1.1554 | 8.0 | 13070 | 1.1681 | 0.5080 |
64
+ | 1.1279 | 8.9995 | 14703 | 1.1685 | 0.5100 |
65
+ | 1.1121 | 9.9954 | 16330 | 1.1701 | 0.5118 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.41.0
71
+ - Pytorch 2.0.1+cu117
72
+ - Datasets 2.19.1
73
+ - Tokenizers 0.19.1