--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: cards-vit-base-patch16-224-finetuned-v1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.3192410001773364 --- # cards-vit-base-patch16-224-finetuned-v1 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.6835 - Accuracy: 0.3192 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.7866 | 0.9993 | 378 | 1.7677 | 0.2746 | | 1.7457 | 1.9987 | 756 | 1.7163 | 0.2990 | | 1.7123 | 2.9980 | 1134 | 1.6862 | 0.3007 | | 1.6607 | 4.0 | 1513 | 1.6823 | 0.3081 | | 1.6188 | 4.9993 | 1891 | 1.6907 | 0.3108 | | 1.6009 | 5.9987 | 2269 | 1.6773 | 0.3150 | | 1.5485 | 6.9980 | 2647 | 1.6720 | 0.3198 | | 1.5133 | 8.0 | 3026 | 1.6811 | 0.3199 | | 1.5001 | 8.9993 | 3404 | 1.6821 | 0.3209 | | 1.4303 | 9.9934 | 3780 | 1.6835 | 0.3192 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1