|
import itertools |
|
from transformers import PreTrainedTokenizer |
|
import json |
|
import os |
|
|
|
class KmerTokenizer(PreTrainedTokenizer): |
|
def __init__(self, vocab_file=None, kmerlen=6, overlapping=True, maxlen=400, **kwargs): |
|
self.kmerlen = kmerlen |
|
self.overlapping = overlapping |
|
self.maxlen = maxlen |
|
|
|
|
|
self.VOCAB = [''.join(i) for i in itertools.product(*(['ATCG'] * int(self.kmerlen)))] |
|
self.VOCAB_SIZE = len(self.VOCAB) + 5 |
|
|
|
self.tokendict = dict(zip(self.VOCAB, range(5, self.VOCAB_SIZE))) |
|
self.tokendict['[UNK]'] = 0 |
|
self.tokendict['[SEP]'] = 1 |
|
self.tokendict['[CLS]'] = 2 |
|
self.tokendict['[MASK]'] = 3 |
|
self.tokendict['[PAD]'] = 4 |
|
|
|
super().__init__(**kwargs) |
|
|
|
def _tokenize(self, text): |
|
tokens = [] |
|
stoprange = len(text) - (self.kmerlen - 1) |
|
if self.overlapping: |
|
for k in range(0, stoprange): |
|
kmer = text[k:k + self.kmerlen] |
|
if set(kmer).issubset('ATCG'): |
|
tokens.append(kmer) |
|
else: |
|
for k in range(0, stoprange, self.kmerlen): |
|
kmer = text[k:k + self.kmerlen] |
|
if set(kmer).issubset('ATCG'): |
|
tokens.append(kmer) |
|
return tokens |
|
|
|
def _convert_token_to_id(self, token): |
|
return self.tokendict.get(token, self.tokendict['[UNK]']) |
|
|
|
def _convert_id_to_token(self, index): |
|
inv_tokendict = {v: k for k, v in self.tokendict.items()} |
|
return inv_tokendict.get(index, '[UNK]') |
|
|
|
def convert_tokens_to_string(self, tokens): |
|
return ' '.join(tokens) |
|
|
|
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): |
|
if token_ids_1 is None: |
|
return [self.tokendict['[CLS]']] + token_ids_0 + [self.tokendict['[SEP]']] |
|
return [self.tokendict['[CLS]']] + token_ids_0 + [self.tokendict['[SEP]']] + token_ids_1 + [self.tokendict['[SEP]']] |
|
|
|
def get_vocab(self): |
|
return self.tokendict |
|
|
|
def kmer_tokenize(self, seq_list): |
|
seq_ind_list = [] |
|
for seq in seq_list: |
|
tokens = self._tokenize(seq) |
|
token_ids = [self._convert_token_to_id(token) for token in tokens] |
|
if len(token_ids) < self.maxlen: |
|
token_ids.extend([self.tokendict['[PAD]']] * (self.maxlen - len(token_ids))) |
|
else: |
|
token_ids = token_ids[:self.maxlen] |
|
seq_ind_list.append(token_ids) |
|
return seq_ind_list |
|
|
|
def save_vocabulary(self, save_directory, filename_prefix=None): |
|
if not os.path.isdir(save_directory): |
|
os.makedirs(save_directory) |
|
|
|
vocab_file = os.path.join(save_directory, (filename_prefix + '-' if filename_prefix else '') + 'vocab.json') |
|
|
|
with open(vocab_file, 'w') as f: |
|
json.dump(self.tokendict, f) |
|
|
|
return (vocab_file,) |
|
|
|
def save_pretrained(self, save_directory, **kwargs): |
|
special_tokens_map_file = os.path.join(save_directory, "special_tokens_map.json") |
|
with open(special_tokens_map_file, "w") as f: |
|
json.dump({ |
|
"kmerlen": self.kmerlen, |
|
"overlapping": self.overlapping, |
|
"maxlen": self.maxlen |
|
}, f) |
|
vocab_files = self.save_vocabulary(save_directory) |
|
return (special_tokens_map_file,) + vocab_files |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): |
|
|
|
tokenizer = super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) |
|
|
|
|
|
special_tokens_map_file = os.path.join(pretrained_model_name_or_path, "special_tokens_map.json") |
|
if os.path.isfile(special_tokens_map_file): |
|
with open(special_tokens_map_file, "r") as f: |
|
special_tokens_map = json.load(f) |
|
tokenizer.kmerlen = special_tokens_map.get("kmerlen", 6) |
|
tokenizer.overlapping = special_tokens_map.get("overlapping", True) |
|
tokenizer.maxlen = special_tokens_map.get("maxlen", 400) |
|
|
|
|
|
vocab_file = os.path.join(pretrained_model_name_or_path, "vocab.json") |
|
if os.path.isfile(vocab_file): |
|
with open(vocab_file, "r") as f: |
|
tokendict = json.load(f) |
|
tokenizer.tokendict = tokendict |
|
|
|
return tokenizer |
|
|